In this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels of 8-adjacency give better results compared with the 4-adjacency neighborhood relations, because the 8-adjacency considers the eight pixels around the center pixel, which reduces the required communication rules to obtain the final segmentation results. The experimental results proved that the proposed approach has superior results in terms of the number of computational steps and processing time. To the best of our knowledge, this is the first time an evaluation procedure is conducted to evaluate the efficiency of real image segmentations using membrane computing.
Cloth simulation and animation has been the topic of research since the mid-80's in the field of computer graphics. Enforcing incompressible is very important in real time simulation. Although, there are great achievements in this regard, it still suffers from unnecessary time consumption in certain steps that is common in real time applications. This research develops a real-time cloth simulator for a virtual human character (VHC) with wearable clothing. This research achieves success in cloth simulation on the VHC through enhancing the position-based dynamics (PBD) framework by computing a series of positional constraints which implement constant densities. Also, the self-collision and collision wit
... Show MoreToday, the role of cloud computing in our day-to-day lives is very prominent. The cloud computing paradigm makes it possible to provide demand-based resources. Cloud computing has changed the way that organizations manage resources due to their robustness, low cost, and pervasive nature. Data security is usually realized using different methods such as encryption. However, the privacy of data is another important challenge that should be considered when transporting, storing, and analyzing data in the public cloud. In this paper, a new method is proposed to track malicious users who use their private key to decrypt data in a system, share it with others and cause system information leakage. Security policies are also considered to be int
... Show MoreRutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R
... Show MoreMembrane manufacturing system was operated using dry/wet phase inversion process. A sample of hollow fiber membrane was prepared using (17% wt PVC) polyvinyl chloride as membrane material and N, N Dimethylacetamide (DMAC) as solvent in the first run and the second run was made using (DMAC/Acetone) of ratio 3.4 w/w. Scanning electron microscope (SEM) was used to predict the structure and dimensions of hollow fiber membranes prepared. The ultrafiltration experiments were performed using soluble polymeric solute poly ethylene glycol (PEG) of molecular weight (20000 Dalton) 800 ppm solution 25 °C temperature and 1 bar pressure. The experimental results show that pure water permeation increased from 25.7 to 32.2 (L/m2.h.bar) by adding aceton
... Show MoreNew technologies have risen into popularity causing the Liquid membrane techniques to evolve over other separation techniques due to its high selectivity and recovery, increased fluxes, and reduced investment and operating cost. This work focuses on extracting Methylene Blue (MB), a cationic dye using a simple BLM separation technique from its aqueous phase. It combines extraction and stripping in a single unit operation. The feed phase was an aqueous solution of MB, the solvent chosen was soybean oil for the liquid/organic membrane phase, and tri-octyl amine acted as a carrier. The strip phase was a hydrochloric acid solution for this study. A two-phase equilibrium study was done to choose the correct solvent, carrier,
... Show MoreForward osmosis (FO) process was applied to concentrate the orange juice. FO relies on the driving force generating from osmotic pressure difference that result from concentration difference between the draw solution (DS) and orange juice as feed solution (FS). This driving force makes the water to transport from orange juice across a semi-permeable membrane to the DS without any energy applied. Thermal and pressure-driven dewatering methods are widely used, but they are prohibitively energy intensive and hence, expensive. Effects of various operating conditions on flux have been investigated. Four types of salts were used in the DS, (NaCl, CaCl2, KCl, and MgSO4) as osmotic agent and the experiments were performed at the concentration of
... Show MoreMembrane manufacturing system was operated using dry/wet phase inversion process. A sample of hollow fiber membrane was prepared using (17% wt PVC) polyvinyl chloride as membrane material and N, N Dimethylacetamide (DMAC) as solvent in the first run and the second run was made using (DMAC/Acetone) of ratio 3.4 w/w. Scanning electron microscope (SEM) was used to predict the structure and dimensions of hollow fiber membranes prepared. The ultrafiltration experiments were performed using soluble polymeric solute poly ethylene glycol (PEG) of molecular weight (20000 Dalton) 800 ppm solution 25 °C temperature and 1 bar pressure. The experimental results show that pure water permeation increased from 25.7 to 32.2 (L/m2.h.bar) by adding a
... Show MoreThis work was conducted to study the extraction of pelletierine sulphate from Punica granatum L. roots by liquid membrane techniques. Pelletierine sulphate is used widely in medicine. The general behavior of extraction process indicates that pelletierine conversion increased with increasing the number of stages and the discs rotation speed but high rotation speed was not favored because of the increased risk of droplet formation during the operation. The pH of feed and acceptor solution was also important. The results exhibit that the highest pelletierine conversion was obtained when using two stages,(10 rpm) discs speed of stainless steel discs,(pH= 9.5) of feed solution and (pH= 2) of acceptor solution in n-decane. Assuming the existence
... Show MoreThe pervaporation using a commercial hydrophilic ceramic membrane supplied from PERVATECH was conducted. The dehydration of ethanol/ water system was used as a model for the pervaporation study. Pervaporation experiments of ethanol/water system were carried out in the temperature range of 303-343K, ethanol concentration in the feed 10-90 vol. % and the feed flow rate in the range of 0.5-10 L/min. In this work, the effect of operation parameters on permeates fluxes as well as permeates separation factors have been studied. The Water flux is strongly dependent on the temperature; it increased with increasing in temperature, which in turn decreased the selectivity of membrane to water molecules.
In addition water flux was decr
... Show More