There is no doubt that optical fiber technology is one of the most important stages of the communications revolution at all and it is of utmost importance in our daily life. In this work, five fibers with core radii 2.5, 4.5 and 6.5–8.5 μm were designed. The properties of all guided modes have been calculated at a wavelength of 1550 nm by using RP Fiber Calculator. A single-mode fiber is obtained when the core radius approaches the wavelength. As the core radius is increased, the fiber becomes a multimode. The percentage power in the core increases with increasing core radius. The modes profiles were illustrated and compared with the modern references.
In this research Bi2S3 thin films have been prepared on glass substrates using chemical spray pyrolysis method at substrate temperature (300oC) and molarity (0.015) mol. Structural and optical properties of the thin films above have been studied; XRD analysis demonstrated that the Bi2S3 films are polycrystalline with (031) orientation and with Orthorhombic structure. The optical properties were studied using the spectral of the absorbance and transmission of films in wavelength ranging (300-1100) nm. The study showed that the films have high transmission within the range of the visible spectrum. Also absorption coefficient, extinction coefficient and the optical energy gap (Eg) was calculated, found that the film have direct ener
... Show MoreEffect of copper doping and thermal annealing on the structural and optical properties of Zn0.5Cd0.5S thin films prepared by chemical spray pyrolysis have been studied. Depositions were done at 250°C on glass substrate. The structural properties and surface morphology of deposited films were studied using X-ray diffraction (XRD) and photomicroscope (PHM) techniques. XRD studies reveal that all films are crystalline tetragonal structure. The film crystallinity are increased with 1% Cu-doping concentration and also increased for the films annealed at 300°C than the other studied cases. The lattice constant 'a' and 'c' varies with doping concentrations from 5.487Å to 5.427Å and 10.871Å to 10.757Å respectively. The grain size attained
... Show MoreNano-structural of vanadium pentoxide (V2O5) thin films were
deposited by chemical spray pyrolysis technique (CSPT). Nd and Ce
doped vanadium oxide films were prepared, adding Neodymium
chloride (NdCl3) and ceric sulfate (Ce(SO4)2) of 3% in separate
solution. These precursor solutions were used to deposit un-doped
V2O5 and doped with Nd and Ce films on the p-type Si (111) and
glass substrate at 250°C. The structural, optical and electrical
properties were investigated. The X-ray diffraction study revealed a
polycrystalline nature of the orthorhombic structure with the
preferred orientation of (010) with nano-grains. Atomic force
microscopy (AFM) was used to characterize the morphology of the
films. Un-do
In this research, main types of optical coatings are presented which are used as covers for solar cells, these coatings are reflect the infrared (heat) from the solar cell to increase the efficiency of the cell (because the cell’s efficiency is inversely proportional to the heat), then the theoretical and mathematical description of these optical coatings are presented, and an optical design is designed to meet this objective, its optical transmittance was calculated using (MATLAB R2008a) and (Open Filters 1.0.2) programs
The optical transmission and UV-VIS absorption spectra have been recorded in the wavelength range (200-1100m) for different composition of polyaniline and polyvinyl Alcohol(PVA ) blends thin films. Polyaniline was prepared in acidic medium to enhancement the solubility and processibility, The optical energy gap (Eopt) refractive index and optical dielectric constant real and imaginary part have been evaluated. The effects of doping percentage of prepared polyaniline on these parameters was discussed and the non –linear behavior for all these parameters was investigated.
Background: Poly (methyl methacrylate) has several disadvantages (poor mechanical properties) like impact and transverse strength. In order to overcome these disadvantages, several methods were used to strengthen the acrylic resin by using different fibers or fillers. This study was conducted to evaluate the effect of Plasma treatment of the fiber on mechanical properties Poly (methyl methacrylate) denture base material. Materials and methods: Specimens were prepared from poly methyl metha acrylic (PMMA) divided according to present of fiber into 4 groups (first group without fiber as control group, second group with Plasma treated polyester fibers, third group with Plasma treated polyamide fibers and fourth group Plasma treated combination
... Show MoreThe study was reflection of the impact of the widespread use of polymer Novolak composite reinforced Glass fiber and Asbestos fiber once again with weight fraction 60% on the physical properties, which included (Hardness, Compressive deformation, compressive modulus of elasticity, Flexural modulus of elasticity, Resilience modulus, the maximum of Flexural strength, Flexural strain energy and Shear strength inner layers); it is known how much important the media as a source of bacterial contamination, which contributes directly or indirectly in the process of aging of these materials. These Novolak composite reinforced, prepared by weight fraction of (10%) and (14%) of the Hexamethylene-tetraamine (HMTA) hardener material. It
... Show MoreThe photo-electrochemical etching (PECE) method has been utilized to create pSi samples on n-type silicon wafers (Si). Using the etching time 12 and 22 min while maintaining the other parameters 10 mA/cm2 current density and HF acid at 75% concentration.. The capacitance and resistance variation were studied as the temperature increased and decreased for prepared samples at frequencies 10 and 20 kHz. Using scanning electron microscopy (SEM), the bore width, depth, and porosity % were validated. The formation of porous silicon was confirmed by x-ray diffraction (XRD) patterns, the crystal size was decreased, and photoluminescence (PL) spectra revealed that the emission peaks were centered at 2q of 28.5619° and 28.7644° for et
... Show More