The coordination ability of the azo-Schiff base 2-[1,5-Dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethyl imino]-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylazo]-5- hydroxy-benzoic acid has been proven in complexation reactions with Co(II), Ni(II), Cu(II), Pd(II) and Pt(II) ions. The free ligand (LH) and its complexes were characterized using elemental analysis, determination of metal concentration, magnetic susceptibility, molar conductivity, FTIR, Uv-Vis, (1H, 13C) NMR spectra, mass spectra and thermal analysis (TGA). The results confirmed the coordination of the ligand through the nitrogen of the azomethine, Azo group (Azo) and the carboxylate ion with the metal ions. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and K are calculated from the TGA curves using Coats– Redfern method. Hyper Chem-8 program has been used to predict structural geometries of compounds in the gas phase. The synthesized ligands and their metal complexes were screened for their biological activity against bacterial species, two Gram positive bacteria (Bacillus subtillis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aereuguinosa)
In this research the a-As flims have been prepared by thermal evaporation with thickness 250 nm and rata of deposition r_d(1.04nm/sec) as function to annealing temperature (373 and 473K), from XRD analysis we can see that the degree of crystalline increase with T_a, and I-V characteristic for dark and illumination shows that forward bias current varieties approximately exponentially with voltage bias. Also we found that the quality factor and saturation current dependence on annealing temperatures.
Titanium dioxide (TiO2) Nano powder has been synthesized by hydrothermal method. The reaction took place between titanium tetrachloride (TiCI4) and mixture solution consisted of deionized water and ethanol, in the ratio (3:7) respectively. Structure and surface morphology of TiO2 Nano powder at different annealing temperatures in the range 200-800°C for 120 min were characterized by X-ray diffraction (XRD), Atomic Force Microscope (AFM), Scanning Electron Microscopy (SEM), FT-IR and UV/visible spectroscopy measurements. The results show that with an increase in annealing temperature, the value of the intensity of (110) peak for rutile phase increases while the value of the full-width at half maximum (FWHM) decreases, and the band gap de
... Show MoreThis contribution investigates the impact of adding transition metal of Ti to CeOy samples at various concentrations referring to 0, 15.84, 24.46, 34.46, 36.23, 38.46, 45.38% and pure TiOy, correspondingly. The samples were fabricated by the magnetron sputtering technique. X-ray diffraction (XRD) configurations demonstrate the presence of α-Ce2O3 and Ce2O3 phases with increased Ti contents in the systems. X-ray photoelectron spectroscopy (XPS) experimentation confirms the purity of the S1-sample (CeO2) and the purity of the S8-sample (TiO2). Further XPS analysis reveals that Ti incorporation in the doped systems functions as a reducing agent because of the existence of α-Ce2O3 and Ce2O3 phases. Moreover, based on UV–vis spectroscopy res
... Show MoreIn this research the a-As flims have been prepared by thermal evaporation with thickness 250 nm and rata of deposition (1.04nm/sec) as function to annealing temperature (373 and 373K), from XRD analysis we can see that the degree of crystalline increase with , and I-V characteristic for dark and illumination shows that forward bias current varieties approximately exponentially with voltage bias. Also we found that the quality factor and saturation current dependence on annealing temperatures.
SnO2 thin films of different two thicknesses were prepared an glass substrate by DC magnetron sputtering. The crystal structure and orientation of the films were investigated by XRD patterns. All the deposited films are polycrystalline. The grain size was calculated as 25.35, 28.8 nm. Morphological and compositions of the films were performed by SEM and EDX analyses respectively. The films appeared compact and rougher surface in nature. The allowed direct band gap was evaluated as 3.85 eV, and other optical constants such as refractive index, extinction coefficient, real and imaginary parts of dielectric constants were determined from transmittance spectrum in the wavelength range (300-900) nm and also analyzed.
This work concerned on nanocrystalline NiAl2O4 and ZnAl2O4 having spinel structure prepared by Sol–gel technique. The structural and characterization properties for the obtained samples were examined using different measurements such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), finally, Field emission scanning electron microscope (FESEM).The Spinel-type for two prepared compound (NiAl2O4) and (ZnAl2O4) at different calcination temperature examined by XRD. Williamson-Hall Methods used to estimate crystallite size, Average distribution crystallite size of two compound were, 34.2 nm for NiAl2O4 and32.6 for ZnAl2O4, the increase in crystallite size affecting by increasing in calcination temperature for both comp
... Show MoreElectrochemical method was used to prepare carbon quantum dots (CQDs). Size of matter was nature when evaluate via X-ray diffraction (XRD). A distinct peak at 2θ equal to 31.6° and three other small peaks at 38.28°, 56.41° and 66.12° were observed. The measures of Fourier Transform Infrared Spectroscopy (FTIR) showed the bonds in the transmittance spectrum are manufactured with carbon nanostructures in view. The first peaks are the O–H stretching vibration bands at (3417 and 2922) cm−1, (C–O–H at 1400, and 1317) cm−1, (C–H), (C=C), (C–O–H), (C=O), and (C–O) bonds at 2850, 1668, 1101, and 1026 cm−1 sequentially. The transmission electron microscopy (TEM) results presented that the spherical CQDs are in shape and on a
... Show More