Background: Sprite coding is a very effective technique for clarifying the background video object. The sprite generation is an open issue because of the foreground objects which prevent the precision of camera motion estimation and blurs the created sprite. Objective: In this paper, a quick and basic static method for sprite area detection in video data is presented. Two statistical methods are applied; the mean and standard deviation of every pixel (over all group of video frame) to determine whether the pixel is a piece of the selected static sprite range or not. A binary map array is built for demonstrating the allocated sprite (as 1) while the non-sprite (as 0) pixels valued. Likewise, holes and gaps filling strategy was utilized to restore the artifacts happened in the binary map. Results: The tests results specified that the proposed method is a fast static sprite area detection algorithm that leads quickly to remarkable sprite location. Conclusion: It is found that the proposed strategies can allocate the sprite (survive) areas easily and in appropriate way and distinguish static sprite region which demonstrate survived region.
Due to restrictions and limitations on agricultural water worldwide, one of the most effective ways to conserve water in this sector is to reduce the water losses and improve irrigation uniformity. Nowadays, the low-pressure sprinkler has been widely used to replace the high-pressure impact sprinklers in lateral move sprinkler irrigation systems due to its low operating cost and high efficiency. However, the hazard of surface runoff represents the biggest obstacle for low-pressure sprinkler systems. Most researchers have used the pulsing technique to apply variable-rate irrigation to match the crop water needs within a normal application rate that does not produce runoff. This research introduces a variable pulsed irrigation algorit
... Show MoreOne of the recent significant but challenging research studies in computational biology and bioinformatics is to unveil protein complexes from protein-protein interaction networks (PPINs). However, the development of a reliable algorithm to detect more complexes with high quality is still ongoing in many studies. The main contribution of this paper is to improve the effectiveness of the well-known modularity density ( ) model when used as a single objective optimization function in the framework of the canonical evolutionary algorithm (EA). To this end, the design of the EA is modified with a gene ontology-based mutation operator, where the aim is to make a positive collaboration between the modularity density model and the proposed
... Show MoreThe ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communi
... Show Moreinsulin-like Growth Factor 1 (IGF-1) gene has been described in several studies as a candidate gene for growth. The present study attempts to identify associations between body weight traits and polymorphisms at 279 position of 5'UTR flanking region of IGF-1 gene in broiler chickens. Three hundred broiler chickens from two breeds (Cobb 500 and Hubbard F-15) were used in this study. A single nucleotide polymorphism (SNP) at 279 position of 5'UTR region of the IGF-1 gene was identified in 20.6 and 60.3% of Cobb 500 and Hubbard F-15, respectively, using the PCR-RFLP technique. Allele frequencies were 83.87 and 42.80% for the T allele and 16.13 and 57.20% for the C allele in Cobb500 and Hubbard-15 breeds, respectively. Genotype frequencies were
... Show MoreAbstract
The research aims to examine the relationship between psychological flow, psychological well-being, and self-management among a sample of fine artists in the Makkah region and its governorates. The research also aims to examine the mean group differences in psychological flow, psychological well-being, and self-management due to demographic variables (sex and years of practicing arts). The sample consists of (110) male and female fine artists. The descriptive correlational approach was performed to collect the data by using the psychological flow scale developed by Payne et al (2011), which was translated by the researcher, the Oxford happiness questionnaire developed by Hills and Argyle (2002), it has t
... Show MoreThis study was conducted to investigate the presence of Staphylococcus aureus in the red and white meat available in local markets. They were selected ten samples of red and white meat randomly (Iraq, Saudi Arabia, Turkey, and Brazil) from different markets in Baghdad, and the results of reading the nutrition facts of media indication card showed that all models confirm to the Iraqi standard quality in terms of scanning all data of the media indication card, except for the birds of Bayader, where the date of expire & production date of the product was not mentioned. Also, the results of the study showed that there is no Staphylococcus aureus in local red and white meat as well as imported.
The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show More