Preferred Language
Articles
/
AhYHYocBVTCNdQwCwUkJ
Sprite Region Allocation Using Fast Static Sprite Area Detection Algorithm
...Show More Authors

Background: Sprite coding is a very effective technique for clarifying the background video object. The sprite generation is an open issue because of the foreground objects which prevent the precision of camera motion estimation and blurs the created sprite. Objective: In this paper, a quick and basic static method for sprite area detection in video data is presented. Two statistical methods are applied; the mean and standard deviation of every pixel (over all group of video frame) to determine whether the pixel is a piece of the selected static sprite range or not. A binary map array is built for demonstrating the allocated sprite (as 1) while the non-sprite (as 0) pixels valued. Likewise, holes and gaps filling strategy was utilized to restore the artifacts happened in the binary map. Results: The tests results specified that the proposed method is a fast static sprite area detection algorithm that leads quickly to remarkable sprite location. Conclusion: It is found that the proposed strategies can allocate the sprite (survive) areas easily and in appropriate way and distinguish static sprite region which demonstrate survived region.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Nov 24 2023
Journal Name
International Journal Of Statistics In Medical Research
A Novel Algorithm for Predicting Antimicrobial Resistance in Unequal Groups of Bacterial Isolates
...Show More Authors

Choosing antimicrobials is a common dilemma when the expected rate of bacterial resistance is high. The observed resistance values in unequal groups of isolates tested for different antimicrobials can be misleading. This can affect the decision to recommend one antibiotic over the other. We analyzed recalled data with the statistical consideration of unequal sample groups. Data was collected concerning children suspected to have typhoid fever at Al Alwyia Pediatric Teaching Hospital in Baghdad, Iraq. The study period extended from September 2021 to September 2022. A novel algorithm was developed to compare the drug sensitivity among unequal numbers of Salmonella typhi (S. Typhi) isolates tested with different antibacterials.

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Modeling and analysis of thermal contrast based on LST algorithm for Baghdad city
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Dec 01 2014
Journal Name
2014 Ieee Symposium On Differential Evolution (sde)
Comparative analysis of a modified differential evolution algorithm based on bacterial mutation scheme
...Show More Authors

A new modified differential evolution algorithm DE-BEA, is proposed to improve the reliability of the standard DE/current-to-rand/1/bin by implementing a new mutation scheme inspired by the bacterial evolutionary algorithm (BEA). The crossover and the selection schemes of the DE method are also modified to fit the new DE-BEA mechanism. The new scheme diversifies the population by applying to all the individuals a segment based scheme that generates multiple copies (clones) from each individual one-by-one and applies the BEA segment-wise mechanism. These new steps are embedded in the DE/current-to-rand/bin scheme. The performance of the new algorithm has been compared with several DE variants over eighteen benchmark functions including sever

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Enhanced Performance of Consensus Wireless Sensor Controlled System via Particle Swarm Optimization Algorithm
...Show More Authors

     This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s

... Show More
View Publication Preview PDF
Publication Date
Tue May 01 2012
Journal Name
2012 Second International Conference On Digital Information And Communication Technology And It's Applications (dictap)
The compact Genetic Algorithm for likelihood estimator of first order moving average model
...Show More Authors

Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results

... Show More
View Publication
Scopus (5)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A missing data imputation method based on salp swarm algorithm for diabetes disease
...Show More Authors

Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
An Adaptive Multi-Objective Particle Swarm Optimization Algorithm for Multi-Robot Path Planning
...Show More Authors

This paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 08 2015
Journal Name
All Days
Distribution of New Horizontal Wells by the Use of Artificial Neural Network Algorithm
...Show More Authors
Abstract<p>It is an established fact that substantial amounts of oil usually remain in a reservoir after primary and secondary processes. Therefore; there is an ongoing effort to sweep that remaining oil. Field optimization includes many techniques. Horizontal wells are one of the most motivating factors for field optimization. The selection of new horizontal wells must be accompanied with the right selection of the well locations. However, modeling horizontal well locations by a trial and error method is a time consuming method. Therefore; a method of Artificial Neural Network (ANN) has been employed which helps to predict the optimum performance via proposed new wells locations by incorporatin</p> ... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
One Algorithm to Cipher Messages in Columnar and Fixed Period-d Transposition Cipher
...Show More Authors

    One of ciphering systems depends on transposition of letters in plain text to generate cipher text. The programming of transposition depends mainly on 2-dimension matrix in either methods but the difference is in columnar .We print columns in the matrix according to their numbers in key but in the fixed, the cipher text will be obtained by printing matrix by rows.

View Publication Preview PDF
Publication Date
Thu Jun 16 2022
Journal Name
Al-khwarizmi Engineering Journal
Path Planning and Obstacle Avoidance of a Mobile Robot based on GWO Algorithm
...Show More Authors

planning is among the most significant in the field of robotics research.  As it is linked to finding a safe and efficient route in a cluttered environment for wheeled mobile robots and is considered a significant prerequisite for any such mobile robot project to be a success. This paper proposes the optimal path planning of the wheeled mobile robot with collision avoidance by using an algorithm called grey wolf optimization (GWO) as a method for finding the shortest and safe. The research goals in this study for identify the best path while taking into account the effect of the number of obstacles and design parameters on performance for the algorithm to find the best path. The simulations are run in the MATLAB environment to test the

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref