Background: Sprite coding is a very effective technique for clarifying the background video object. The sprite generation is an open issue because of the foreground objects which prevent the precision of camera motion estimation and blurs the created sprite. Objective: In this paper, a quick and basic static method for sprite area detection in video data is presented. Two statistical methods are applied; the mean and standard deviation of every pixel (over all group of video frame) to determine whether the pixel is a piece of the selected static sprite range or not. A binary map array is built for demonstrating the allocated sprite (as 1) while the non-sprite (as 0) pixels valued. Likewise, holes and gaps filling strategy was utilized to restore the artifacts happened in the binary map. Results: The tests results specified that the proposed method is a fast static sprite area detection algorithm that leads quickly to remarkable sprite location. Conclusion: It is found that the proposed strategies can allocate the sprite (survive) areas easily and in appropriate way and distinguish static sprite region which demonstrate survived region.
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreConcentrations of radon were measured in this study for twenty-four samples of soil distributed in six locations on the north part of Iraq. The radon concentrations in soil samples measured by using alpha-emitters registration that emits from Radon (222Rn) in (CR-39) track detector. The concentrations values were calculated by a comparison with standard samples. The results shows that the radon gas concentrations in Darbandikhan City varies from (16.60-34.04 Bq/m3), Halabja City (16.51-23.32 Bq/m3), Al Sulaimaniya City (17.61-32.25 Bq/m3), Koisnjaq City (22.04-35.65 Bq/m3), Shaqlaua City (21.10-29.10 Bq/m3) and Erbil City (22.30-34.63 Bq/m3). The average radon gas concentration in Al Sulaimaniya and Erbil governorate are (22.30 Bq/m3)
... Show MoreBackground: Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is still a severe threaft for human health currently, and the researches about it is a focus topic worldwide.
Aim of the study: In this study, we will collect some laboratory results of the patients with coronavirus disease (COVID-19) to assess the function of liver, heart, kidney and even pancreas.
Subjects and Methods: Laboratory results of the patients with COVID-19 are collected. The biochemical indices are classified and used to assess the according function of liver, heart, kidney; meantime, and blood glucose is also observed and taken as an index to roughly evaluate pancreas.
Results: There were some in
... Show MoreCloth simulation and animation has been the topic of research since the mid-80's in the field of computer graphics. Enforcing incompressible is very important in real time simulation. Although, there are great achievements in this regard, it still suffers from unnecessary time consumption in certain steps that is common in real time applications. This research develops a real-time cloth simulator for a virtual human character (VHC) with wearable clothing. This research achieves success in cloth simulation on the VHC through enhancing the position-based dynamics (PBD) framework by computing a series of positional constraints which implement constant densities. Also, the self-collision and collision wit
... Show MoreBeta-irradiation effects on the microstructure of LDPE samples have been investigated
using Positron Annihilation Lifetime Technique (PALT). These effects on the orthopositronium
(o-Ps) Lifetime t3, the free positron annihilation lifetime 2 t , the free-volume
hole size (Vh) and the free volume fraction (fh) were measured as functions of Beta
irradiation - dose up to a total dose of 30.28 kGy.
The results show that the values of t3, Vh and fh increase gradually with increasing Beta
dose up to a total dose of 1.289 kGy, and reach a maximum increment of 17.4%, 32.8% and
5.86%, respectively, while t2 reachs maximum increment of 211.9% at a total dose of 1.59
kGy. Above these doses, the values show nonlinear changes u
The kinetics of removing cadmium from aqueous solutions was studied using a bio-electrochemical reactor with a packed bed rotating cylindrical cathode. The effect of applied voltage, initial concentration of cadmium, cathode rotation speed, and pH on the reaction rate constant (k) was studied. The results showed that the cathodic deposition occurred under the control of mass transfer for all applied voltage values used in this research. Accordingly, the relationship between logarithmic concentration gradient with time can be represented by a first-order kinetic rate equation. It was found that the rate constant (k) depends on the applied voltage, the initial cadmium concentration, the pH and the rotational speed of cathode. It
... Show More