In this paper, a new hybridization of supervised principal component analysis (SPCA) and stochastic gradient descent techniques is proposed, and called as SGD-SPCA, for real large datasets that have a small number of samples in high dimensional space. SGD-SPCA is proposed to become an important tool that can be used to diagnose and treat cancer accurately. When we have large datasets that require many parameters, SGD-SPCA is an excellent method, and it can easily update the parameters when a new observation shows up. Two cancer datasets are used, the first is for Leukemia and the second is for small round blue cell tumors. Also, simulation datasets are used to compare principal component analysis (PCA), SPCA, and SGD-SPCA. The results sh
... Show MoreIn many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th
... Show MoreIn this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB
... Show MoreFabrication and investigation of the properties of CdSe/ZnS core/shell for the luminescent solar concentrates (LSC) application is presented. An increase of the efficiency of a silicon solar cell was obtained by applying the LSC. The increase was a result of the optical properties of the semiconductor nanoparticles CdSe/ZnS core/shell that were deposited over the top surface of the silicon solar cell facing the illumination source (Halogen lamp). The gravity force was invested for the film deposition process.The optical properties of these nanoparticles were studied. The absorption spectra for the CdSe/ZnS core-shell were 270-600nm, i.e., located within the spectral response area of the examined solar cell. The energy gap values for CdSe
... Show MoreFruits sorting, recognizing, and classifying are essential post-harvest operations, as they contribute to the quality of food industry, thereby increasing the exported quantity of food. Today, an automated system for fruit classification and recognition is very important, especially when exporting to markets where quality of fruit must be high. In this study, the advantages and disadvantages of the various shape-based feature extraction algorithms and technologies that are used in sorting, classifying, and grading of fruits, as well as fruits quality estimation, are discussed in order to provide a good understanding of the use of shape-based feature extraction techniques.