DeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detection in all previous studies was less than what this paper achieved, especially with the benchmark Flickr faces high-quality dataset (FFHQ). This study proposed, a new, simple, but powerful method called image Re-representation by combining the local binary pattern of multiple-channel (IR-CLBP-MC) color space as an image re-representation technique improved DeepFake detection accuracy. The IRCLBP- MC is produced using the fundamental concept of the multiple-channel of the local binary pattern (MCLBP), an extension of the original LBP. The primary distinction is that in our method, the LBP decimal value is calculated in each local patch channel, merging them to re-represent the image and producing a new image with three color channels. A pretrained convolutional neural network (CNN) was utilized to extract the deep textural features from twelve sets of a dataset of IR-CLBP-MC images made from different color spaces: RGB, XYZ, HLS, HSV, YCbCr, and LAB. Other than that, the experimental results by applying the overlap and non-overlap techniques showed that the first technique was better with the IR-CLBP-MC, and the YCbCr image color space is the most accurate when used with the model and for both datasets. Extensive experimentation is done, and the high accuracy obtained are 99.4% in the FFHQ and 99.8% in the CelebFaces Attributes dataset (Celeb-A).
Science, technology and many other fields are use clustering algorithm widely for many applications, this paper presents a new hybrid algorithm called KDBSCAN that work on improving k-mean algorithm and solve two of its
problems, the first problem is number of cluster, when it`s must be entered by user, this problem solved by using DBSCAN algorithm for estimating number of cluster, and the second problem is randomly initial centroid problem that has been dealt with by choosing the centroid in steady method and removing randomly choosing for a better results, this work used DUC 2002 dataset to obtain the results of KDBSCAN algorithm, it`s work in many application fields such as electronics libraries,
Researchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l
... Show MoreRegarding the security of computer systems, the intrusion detection systems (IDSs) are essential components for the detection of attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in real time. A major drawback of the IDS is their inability to provide adequate sensitivity and accuracy, coupled with their failure in processing enormous data. The issue of classification time is greatly reduced with the IDS through feature selection. In this paper, a new feature selection algorithm based on Firefly Algorithm (FA) is proposed. In addition, the naïve bayesian classifier is used to discriminate attack behaviour from normal behaviour in the network tra
... Show MoreThe steganography (text in image hiding) methods still considered important issues to the researchers at the present time. The steganography methods were varied in its hiding styles from a simple to complex techniques that are resistant to potential attacks. In current research the attack on the host's secret text problem didn’t considered, but an improved text hiding within the image have highly confidential was proposed and implemented companied with a strong password method, so as to ensure no change will be made in the pixel values of the host image after text hiding. The phrase “highly confidential” denoted to the low suspicious it has been performed may be found in the covered image. The Experimental results show that the covere
... Show MoreThe objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme
... Show MoreIn this research, the Williamson-Hall method and of size-strain plot method was employed to analyze X- ray lines for evaluating the crystallite size and lattice strain and of cadmium oxide nanoparticles. the crystallite size value is (15.2 nm) and (93.1 nm) and lattice strain (4.2 x10−4 ) and (21x10−4) respectively. Also, other methods have been employed to evaluate the crystallite size. The current methods are (Sherrer and modified Sherrer methods ) and their results are (14.8 nm) and (13.9nm) respectively. Each method of analysis has a different result because the alteration in the crystallite size and lattice strain calculated according to the Williamson-Hall and size-strain plot methods shows that the non-uniform strain in nan
... Show MoreFungi produce a series of toxic compounds on corn, especially Fumonisin B1 (FB1) toxin produced by Fusarium spp. and promoting cancer activity in humans and animals. This study aimed to the isolation and identification of fungi associated with local corn seeds and the detection for the presence of FB1 by using ELISA technique. Thirty samples of corn ears were collected from silos and markets in Baghdad city during the period from November 2018 to March 2019. The present study found that Fusarium was the dominant isolate among fungi in terms of the relative density 57.07%, followed by Aspergillus 31.17%, Rhizopus 3.36%, Alternaria 2.88%, Mucor 2.16%, Penicillium 1.92%, Trichothecium 0.96%, and Helminthosporium 0.48%. FB1 was detected in a
... Show MoreBackground: Legionella pneumophila (L. pneumophila) is gram-negative bacterium, which causes Legionnaires’ disease as well as Pontiac fever. Objective: To determine the frequency of Legionella pneumophila in pneumonic patients, to determine the clinical utility of diagnosing Legionella pneumonia by urinary antigen testing (LPUAT) in terms of sensitivity and specificity, to compares the results obtained from patients by urinary antigen test with q Real Time PCR (RT PCR) using serum samples and to determine the frequency of serogroup 1 and other serogroups of L. pneumophila. Methods: A total of 100 pneumonic patients (community acquired pneumonia) were enrolled in this study during a period between October 2016 to April 2017; 92 sam
... Show More