In the current study, CuAl0.7In0.3Te2 thin films with 400 nm thickness were deposited on glass substrates using thermal evaporation technique. The films were annealed at various annealing temperatures of (473,573,673 and 773) K. Furthermore, the films were characterized by X-ray Diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Ultra violet-visible (UV–vis). XRD patterns confirm that the films exhibit chalcopyrite structure and the predominant diffraction peak is oriented at (112). The grain size and surface roughness of the annealed films have been reported. Optical properties for the synthesized films including, absorbance, transmittance, dielectric constant, and refractive index were inspected at room and annealing temperatures. Results indicate that In-substituted films exhibit high optical absorbance in the visible region of electromagnetic wave. At 425 nm, the absorbance spectrum for the as-deposited film is increased by ≈ 36% for the In-doped film. Our analyzed results manifest that the annealed CuAlTe2 and CuAl0.7In0.3Te2 films possess direct optical band gap energies positioning in the range of 2.3–2.05 eV and 2.28–1.85 eV, respectively. Furthermore, it can be observed that annealing can enhance the optical performance of both pure and In-doped films. The obtained results are important to gain insight into the Cu–Al–In–Te compounds to be utilized in optoelectronic applications.
In this research study theory to find the stress and emotion gases in the glass as a result of exposure to pulses of the laser beam has been the study using vehicles three major on-system axes cylindrical (r, 0, z), where I took three models of glass silica glass soda glass fused and shedtwo types of lasers where the study showed that the thermal stresses and emotions ...
Background: The quality of drinking water is directly related to community health. Therefore, improving the quality of drinking reflects positively on the health situation in general. The studies that deal with the quality of drinking water in the city of Baghdad in terms of chemical or microbial content are very scanty. Objective: The current review highlights the most important studies and research articles that concern the quality of drinking water, both bottled water and tap water, in terms of chemical and biological contamination and chemophysical specifications for drinking water. Abstract: Studies have shown that drinking water in the city of Baghdad, especially tap water, contains certain levels of heavy metals,
... Show MoreClimate change is one of the global issues that is receiving wide attention due to its clear impact on all living organisms. This is essential for Iraq since it was classified as the fifth most vulnerable country to climate change. One of the manifestations of these changes in Iraq is the increasing frequency and severity of dust storms. In this study, the Normalized Difference Dust Index (NDDI) spectral index for Moderate Resolution Imaging Spectroradiometer (MODIS) sensor bands was used to measure and track the dust storm that occurred on May 16, 2022, as well as to test the validity of one of the daily products of this sensor, MOD11A1, to measure surface temperature and emissivity before and after the storm. It was found that the MOD0
... Show MoreAssessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem
In this research TiO2 nano-powder was prepared by a spray pyrolysis technique and then adds to the TiO2 powder with particle size (0.523 μm) in ratio (0, 5, 10, 15 at %) atomic percentage, and then deposition of the mixture on the stainless steel 316 L substrate in order to use in medical and industrial applications.
Structure properties including x-ray diffraction (XRD) and scanning electron microscope (SEM0, also some of mechanical properties and the effect of thermal annealing in different temperature have been studied. The results show that the particle size of a prepared nano-powder was 50 up to 75 nm from SEM, and the crystal structure of the powders (original and nano powder) was rutile with tetragonal cell. An improvement in
When the digital technologies entered the world of cinema production, they boosted the ability of the cinematographic medium to implement various subjects with great accuracy, as the development included all the joints and stages of the cinematic film production whether it is a feature film or an animation. Therefore, the process of film manufacturing by the digital technologies reflects the spirit of the age and the development that humanity has attained. What motivated the researcher to determine the topic of the research, which combines between the sound effects and the animated films under the title (aesthetics of employing digital sound effects in animated films), is the work of the digital technologies. The researcher divide
... Show MoreAbstract Bilastine, a second-generation antihistamine, is commonly prescribed for managing allergic rhinoconjunctivitis and urticaria due to its prolonged action. However, its therapeutic potential is constrained by poor water solubility and low oral bioavailability. This study aimed to enhance bilastine dissolution and patient compliance by formulating a nanosuspension-based orodispersible film (ODF). An anti-solvent precipitation method was employed to produce nanosuspension using different hydrophilic stabilizers (Soluplus®, Poloxamer 188, and PEG 6000). The influence of formulation parameters, such as the stabilizer ratio, the anti-solvent ratio, stirring speed, and the stabilizer type, on particle size and polydispersity index (PDI)
... Show MoreDate palm fiber is one of the common wastes available in the M. E. countries essentially Iraq. The aim of search to investigate the performance and effects of fiber date palm on the mechanical properties of high strength concrete, this fiber was used in three ratio 2, 4 and 6 % by vol. of concrete at ages of (7, 28, 90) days. Results demonstrated improvement in the compressive strength increased 19.2 %, 23.6%, 24.9 % for 2%, 4%, 6% of fiber respectively at age 28 days. Flexural strength increases 47.6%, 66.2%, 93.8% form (2,4,6) % of fiber respectively at age 28 days. Density increase about 0.41%, 0, 61 % 0.69 % for (2,4,6) % of fiber respectively at age 28. Absorption water decrease