Preferred Language
Articles
/
ARbsNooBVTCNdQwCKZKK
Influence of In-dopant on the optoelectronic properties of thermal evaporated CuAlTe2 films
...Show More Authors

In the current study, CuAl0.7In0.3Te2 thin films with 400 nm thickness were deposited on glass substrates using thermal evaporation technique. The films were annealed at various annealing temperatures of (473,573,673 and 773) K. Furthermore, the films were characterized by X-ray Diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Ultra violet-visible (UV–vis). XRD patterns confirm that the films exhibit chalcopyrite structure and the predominant diffraction peak is oriented at (112). The grain size and surface roughness of the annealed films have been reported. Optical properties for the synthesized films including, absorbance, transmittance, dielectric constant, and refractive index were inspected at room and annealing temperatures. Results indicate that In-substituted films exhibit high optical absorbance in the visible region of electromagnetic wave. At 425 nm, the absorbance spectrum for the as-deposited film is increased by ≈ 36% for the In-doped film. Our analyzed results manifest that the annealed CuAlTe2 and CuAl0.7In0.3Te2 films possess direct optical band gap energies positioning in the range of 2.3–2.05 eV and 2.28–1.85 eV, respectively. Furthermore, it can be observed that annealing can enhance the optical performance of both pure and In-doped films. The obtained results are important to gain insight into the Cu–Al–In–Te compounds to be utilized in optoelectronic applications.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri Apr 21 2023
Journal Name
Aip Conference Proceedings
Study the contrast of thermal expansion behavior for PMMA denture base, single and hybrid reinforced using the thermomechanical analysis technique (TMA)
...Show More Authors

This research investigated the effect of adding two groups of reinforcement materials, including bioactive materials Hydroxyapatite (HA) and halloysite nanoclay and bioinert materials Alumina (AL2O3) and Zirconia (ZrO2), each of them with various weight ratios (1,2,3,4 &5)% to the polymer matrix PMMA. The best ratios were selected, and then a hybrid was preparing Composite red from the best ratios from each group. Thermal properties, including thermal conductivity and Thermomechanical Analysis (TMA) technology, have been studied. The results showed that adding 3% Hydroxyapatite (HA) and 5% halloysite nanoclay to the polymethacrylate (PMMA) mer leads to an increase in thermal conductivity. It was also found from the Thermomechanical Analysis

... Show More
Publication Date
Sun Jan 01 2023
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees22fr
Study the contrast of thermal expansion behavior for PMMA denture base, single and hybrid reinforced using the thermomechanical analysis technique (TMA)
...Show More Authors

View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Arpn Journal Of Engineering And Applied Sciences
Numerical and experimental analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 7020-T53
...Show More Authors

Scopus (2)
Scopus
Publication Date
Tue Mar 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Production and Evaluation of Liquid Hydrocarbon Fuel from Thermal Pyrolysis of Virgin Polyethylene Plastics
...Show More Authors

   Pyrolysis of virgin polyethylene plastics was studied in order to produce hydrocarbon liquid fuel. The pyrolysis process carried out for low and high-density polyethylene plastics in open system batch reactor in temperature range of 370 to 450°C.

   Thermo-gravimetric analysis of the virgin plastics showed that the degradation ranges were between 326 and 495 °C. The results showed that the optimum temperature range of pyrolysis of polyethylene plastics that gives highest liquid yield (with specific gravity between 0.7844 and 0.7865) was 390 to 410 °C with reaction time of about 35 minutes. Fourier Transform Infrared spectroscopy gave a quite evidence that the produced hydrocarbon liquid fuel consisted ma

... Show More
View Publication Preview PDF
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
Experimental Investigation Utilizing Thermal Image Technique to the Heat Transfer Enhancement Using Oscillated Fins
...Show More Authors

Heat transfer around a flat plate fin integrated with piezoelectric actuator used as oscillated fin in laminar flow has been studied experimentally utilizing thermal image camera. This study is performed
for fixed and oscillated single and triple fins. Different substrate-fin models have been tested, using fins of (35mm and 50mm) height, two sets of triple fins of (3mm and 6mm) spacing and three frequencies
applied to piezoelectric actuator (5, 30 and 50HZ). All tests are carried out for (0.5 m/s and 3m/s) in subsonic open type wind tunnel to evaluate temperature distribution, local and average Nusselt number (Nu) along the fin. It is observed, that the heat transfer enhancement with oscillation is significant compared to without o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Enhancement of the solubility of polyaniline and studying the optical properties of (PANI+PVA) polymers blends.
...Show More Authors

The optical transmission and UV-VIS absorption spectra have been recorded in the wavelength range (200-1100m) for different composition of polyaniline and polyvinyl Alcohol(PVA ) blends thin films. Polyaniline was prepared in acidic medium to enhancement the solubility and processibility, The optical energy gap (Eopt) refractive index and optical dielectric constant real and imaginary part have been evaluated. The effects of doping percentage of prepared polyaniline on these parameters was discussed and the non –linear behavior for all these parameters was investigated.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Optik
Composition effects on formation energies, electronic and vibrational properties of ZnCdS wurtzoid molecules: A DFT study
...Show More Authors

View Publication
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Iraqi Journal Of Physics
Annealing effects on optical and structural properties of chromium oxide thin film deposited by PLD technique
...Show More Authors

Optical properties of chromium oxide (Cr2O3) thin films which were prepared by pulse laser deposition method, onto glass substrates. Different laser energy (500-900) mJ were used to obtain Cr2O3 thin films with thickness ranging from 177.3 to 372.4 nm were measured using Tolansky method. Then films were annealed at temperature equal to 300 °C. Absorption spectra were used to determine the absorption coefficient of the films, and the effects of the annealing temperature on the absorption coefficient were investigated. The absorption edge shifted to red range of wavelength, and the optical constants of Cr2O3 films increases as the annealing temperature increased to 300 °C. X-ray diffraction (XRD) study reveals that Cr2O3 thin films are a

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Journal Of Engineering
Evaluation the Mechanical Properties of Shot Peened TIG Welded Aluminum Sheets
...Show More Authors

A tungsten inert gas (TIG) welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys.  However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15) min. was used. All peened and unpeened, and welded and unwelded samples were  characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring d

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Synthesis and study the electrical properties of carbon nanotubes- polyvinylchloride composites
...Show More Authors

The aim of this paper, study the effect of carbon nanotubes on the electrical properties of polyvinylchloride. Samples of polyvinylchloride carbon nanotubes composite prepared by using hot press technique. The weight percentages of carbon nanotubes are 0,5,10 and 20wt.%. Results showed that the D.C electrical conductivity increases with increasing of the weight percentages of carbon nanotubes. Also, the D.C electrical conductivity changed with increase temperature for different concentrations of carbon nanotubes. The activation energy of D.C electrical conductivity is decreased with increasing of carbon nanotubes concentration.

View Publication Preview PDF