This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreReflective cracking is one of the primary forms of deterioration in pavements. It is widespread when Asphalt concrete (AC) overlays are built over a rigid pavement with discontinuities on its surface. Thus, this research work aims to reduce reflection cracks in asphalt concrete overlay on the rigid pavement. Asphalt Concrete (AC) slab specimens were prepared in three thicknesses (4, 5, and 6 cm). All these specimens were by testing machine designed and manufactured at the Engineering Consulting Office of the University of Baghdad to examine for the number of cycles and loads needed to propagate the reflection cracking in the asphalt concert mixture at three temperatures (20, 30, and 30°C). It was noticed that the higher thickness A
... Show MoreBACKGROUND: The degree of the development of coronary collaterals is long considered an alternate–that is, a collateral–source of blood supply to an area of the myocardium threatened with vascular ischemia or insufficiency. Hence, the coronary collaterals are beneficial but can also promote harmful (adverse) effects. For instance, the coronary steal effect during the myocardial hyperemia phase and that of restenosis following coronary angioplasty.
The paper deals with the traveling wave cylindrical heating systems. The analysis presented is analytical and a multi-layer model using cylindrical geometry is used to obtain the theoretical results. To validate the theoretical results, a practical model is constructed, tested and the results are compared with the theoretical ones. Comparison showed that the adopted analytical method is efficient in describing the performance of such induction heating systems.
The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe
Mobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern
... Show More