The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The developed ANN mode gave a high correlation coefficient reaching 0.927 for the prediction of TDS from the model and showed high levels of TDS in Al-Hawizeh marsh that pose threats to people using the marsh for drinking and other uses. The dissolved Oxygen concentration has the highest importance of 100% in the model because the water of the marsh is fresh water, while Turbidity had the lowest importance.
The assessment of a river water’ quality is an essential procedure of monitor programs and isused to collect basic environmental data. The management of integrated water resources in asustainable method is also necessary to allow future generations to meet their water needs. Themain objective of this research is to assess the effect of the Diyala River on Tigris River waterquality using Geographic Information System (GIS) technique. Water samples have beencollected monthly from November 2017 to April 2018 from four selected locations in Tigris andDiyala Rivers using the grab sampling method. Fourteen parameters were studied which areTurbidity, pH, Dissolved Oxygen, Biological Oxygen Demand, Electrical Conductivity, TotalDissolved Solids,
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreA survey conducted at Dalmaj marsh, Al-Diwaniya Province during 2013 revealed that the marsh encounters a considerable part of the Iraqi vertebrate fauna including 147 species belonging to five classes; Pisces, Amphibia, Reptilia, Aves and Mammalia. Some species are of globally conservation importance. The present results are discussed with the pertinent literature.
This study aims to evaluate the performance of the sewage treatment plant in Al-Diwaniya, one of cities in the southern part in Iraq. This evaluation could be used to facilitate effluent quality assessment or optimal process control of the plant. The influent reaching the plant is considered a medium to strong in strength with BOD5/COD ratio in the range 0.23 and 0.69 which can be considered an easily degradable sewage by the biological processes performed by the activated sludge unit. The quality of the effluent was found to be higher than the Iraqi standards for disposal to water bodies. The BOD5/COD ratios of the treated sewage varied over a wide range as low of 0.13 to 1.48 indicating operational problems in the plant. Regression ana
... Show MoreThis study aims to evaluate the performance of the sewage treatment plant in Al- Diwaniya, one of cities in the southern part in Iraq. This evaluation could be used to facilitate effluent quality assessment or optimal process control of the plant. The influent reaching the plant is considered a medium to strong in strength with BOD5/COD ratio in the range 0.23 and 0.69 which can be considered an easily degradable sewage by the biological processes performed by the activated sludge unit. The quality of the effluent was found to be higher than the Iraqi standards for disposal to water bodies. The BOD5/COD ratios of the treated sewage varied over a wide range as low of 0.13 to 1.48 indicating operational problems in the plant. Regressio
... Show MoreAl-Ruhbah region is located in the southwest of Najaf Governorate. A numerical model was created to simulate groundwater flow and analyze the water quality of the groundwater, by developing a conceptual model within the groundwater modeling system software. Nineteen wells were used, 15 for pumping and four for observation. A three-dimensional model was built based on the cross-sections indicating the geologic layers of the study area, which were composed of five layers. When a distance of 1,000 m between the wells was adopted, 135 wells can be operated simultaneously. These wells were hypothetically operated at 6, 12, and 18 h intervals, with a discharge of 200, 430, and 650 m
Bioindicators have an important role in assessing the quality of water bodies. Aquatic oligocheates, was used as a bioindicator to assess the sediment quality of Al-Hindyia and AL-Abbasyia river (branches of Euphrates River in Iraq). Two sites in each river have been chosen for this purpose, site S1 was located at Al-Hindyia River and S2 at Al-Abbasyia River. Some kinds of biological indices were used in this study, comprising the percentage of oligochaetes in benthic invertebrates, ranged from 20.3-60.16%. While the percentage of Tubificidae within benthic invertebrates was close 43.3-43.9%.Index of pollution D ranged from 0.13-0.21. The maximum percentage of aquatic oligochaetes to insects larvae of family
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
The uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.
Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio
... Show More