The impacts of numerous important factors on the Energy Absorption (EA) of torsional Reinforced Concrete (RC) beams strengthened with external FRP is the main purpose and innovation of the current research. A total of 81 datasets were collected from previous studies, focused on the investigation of EA behaviour. The impact of nine different parameters on the Torsional EA of RC-beams was examined and evaluated, namely the concrete compressive strength (f’c), steel yield strength (fy), FRP thickness (tFRP), width-to-depth of the beam section (b/h), horizontal (ρh) and vertical (ρv) steel ratio, angle of twist (θu), ultimate torque (Tu), and FRP ultimate strength (fy-FRP). For the evaluation of the energy absorption capacity at different levels, Response Surface Methodology (RSM) was implemented in this study. Also, to fit the measured results, Quadratic and Line models were created. The results show that the RSM technique is a highly significant tool that can be applied not only to energy absorption-related problems examined in this research, but also to other engineering problems. An agreement is observed between Pareto and standardized charts with the literature showing that the EA capacity of the torsional FRP-RC beams is mostly affected by the concrete compressive strength, followed by the vertical reinforcement ratio. The newly suggested model in this article exhibits a satisfactory correlation co-efficient (R), of about 80%, with an adequate level of accuracy. The obtained results also reveal that the EA acts as a safety index for the FRP-strengthened RC beams exposed to torsional loadings to avoid sudden structural damage. Doi: 10.28991/cej-2020-SP(EMCE)-07 Full Text: PDF
In this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t
... Show MoreAs COVID-19 pandemic continued to propagate, millions of lives are currently at risk especially elderly, people with chronic conditions and pregnant women. Iraq is one of the countries affected by the COVID-19 pandemic. Currently, in Iraq, there is a need for a self-assessment tool to be available in hand for people with COVID-19 concerns. Such a tool would guide people, after an automated assessment, to the right decision such as seeking medical advice, self-isolate, or testing for COVID-19. This study proposes an online COVID-19 self-assessment tool supported by the internet of medical things (IoMT) technology as a means to fight this pandemic and mitigate the burden on our nation
In networking communication systems like vehicular ad hoc networks, the high vehicular mobility leads to rapid shifts in vehicle densities, incoherence in inter-vehicle communications, and challenges for routing algorithms. It is necessary that the routing algorithm avoids transmitting the pockets via segments where the network density is low and the scale of network disconnections is high as this could lead to packet loss, interruptions and increased communication overhead in route recovery. Hence, attention needs to be paid to both segment status and traffic. The aim of this paper is to present an intersection-based segment aware algorithm for geographic routing in vehicular ad hoc networks. This algorithm makes available the best route f
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreDerivatives of Schiff-bases possess a great importance in pharmaceutical chemistry. They can be used for synthesizing different types of bioactive compounds. In this paper, derivatives of new Schiff bases have been synthesized from several serial steps. The acid (I) was synthesized from the reaction of dichloroethanoic acid with 2 moles of p-aminoacetanilide. New acid (I) converted to its ester (II) via the reaction of (I) with dimethyl sulphate in the present of anhydrous of sodium carbonate and dry acetone. Acid hydrazide (III) has been synthesized by adding 80% of hydrazine hydrate to the new ester using ethanol as a solvent. The last step included the preparation of new Schiff-bases (IV-VIII) by the reaction of acid hydrazide with app
... Show MoreDerivatives of Schiff-bases possess a great importance in pharmaceutical chemistry. They can be used for synthesizing different types of bioactive compounds. In this paper, derivatives of new Schiff bases have been synthesized from several serial steps. The acid (I) was synthesized from the reaction of dichloroethanoic acid with 2 moles of p-aminoacetanilide. New acid (I) converted to its ester (II) via the reaction of (I) with dimethyl sulphate in the present of anhydrous of sodium carbonate and dry acetone. Acid hydrazide (III) has been synthesized by adding 80% of hydrazine hydrate to the new ester using ethanol as a solvent. The last step included the preparation of new Schiff-bases (IV-VIII) by the reaction of acid hydrazide with
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.