The impacts of numerous important factors on the Energy Absorption (EA) of torsional Reinforced Concrete (RC) beams strengthened with external FRP is the main purpose and innovation of the current research. A total of 81 datasets were collected from previous studies, focused on the investigation of EA behaviour. The impact of nine different parameters on the Torsional EA of RC-beams was examined and evaluated, namely the concrete compressive strength (f’c), steel yield strength (fy), FRP thickness (tFRP), width-to-depth of the beam section (b/h), horizontal (ρh) and vertical (ρv) steel ratio, angle of twist (θu), ultimate torque (Tu), and FRP ultimate strength (fy-FRP). For the evaluation of the energy absorption capacity at different levels, Response Surface Methodology (RSM) was implemented in this study. Also, to fit the measured results, Quadratic and Line models were created. The results show that the RSM technique is a highly significant tool that can be applied not only to energy absorption-related problems examined in this research, but also to other engineering problems. An agreement is observed between Pareto and standardized charts with the literature showing that the EA capacity of the torsional FRP-RC beams is mostly affected by the concrete compressive strength, followed by the vertical reinforcement ratio. The newly suggested model in this article exhibits a satisfactory correlation co-efficient (R), of about 80%, with an adequate level of accuracy. The obtained results also reveal that the EA acts as a safety index for the FRP-strengthened RC beams exposed to torsional loadings to avoid sudden structural damage. Doi: 10.28991/cej-2020-SP(EMCE)-07 Full Text: PDF
Combination of natural poly-phenolic compounds with chemotherapeutic agents is recently being a novel strategy in cancer therapy researches owing to their potential antioxidant and anti-inflammatory properties that modulate several intracellular signaling pathways.
Resveratrol and Baicalein are well known poly-phenolic compounds that belong to stilbene and flavone subclasses, respectively.
This study aims to investigate the possible enhancement effect of resveratrol and Baicalein when combined with doxorubicin using a different combination ratio and applied on two cancer cell lines: HCT116 (colorectal cancer cells) and HepG2 (hepatocellular cancer cells). It also investigates the possibility of such natural compounds to p
... Show MoreKE Sharquie, AA Noaimi, SA Al-Hashimy, MM Al-Salih, Journal of Cosmetics, Dermatological Sciences and Applications, 2014 - Cited by 12
Background: Systemic sclerosis (SSc) is a chronic autoimmune illness, which is consider by three main features: Sclerotic changes in the skin and internal organs, Vasculopathy of small blood vessels, Particular autoantibodies (1). The most important autoantibodies appeared significantly in SSc patients are anti-topoisomerase I autoantibody (Scl-70), anti-centromere autoantibody (ACA), and anti-RNA polymerase III autoantibody (RNAP3) (2). Anti-centromere antibodies (ACA) are infrequent in rheumatic conditions and in healthy persons but occur commonly in limited systemic sclerosis (CREST syndrome), and rarely appeared in the diffuse form of systemic sclerosis (3). Anti-Ro/SSA and antiLa/SSB, antibodies directed against Ro/La ribonucleoprot
... Show MoreThe study was carried out in plant tissue culture laboratory, University of Baghdad during the period 2017-2019, as factorial experiment in complete randomized design, to study the effect of PEG at (0, 2, 4, 6 and 8%) on physiological and chemical changes in callus of three sunflower (Ishaqi 1, Aqmar and Al-haga) induced by the cultivation of the young stem in vitro under water stress. The content of callus cells of SOD, POD, CAT and APX enzymes as well as total dissolved carbohydrate were determined as indicators to determine the effect of PEG in callus tissue cells cultivated on medium equipped with the PEG concentrations. The results showed that cultivars were differs significantly, and A-haja variety was superior in increasing SOD to 12
... Show MoreAcrylic polymer/cement nanocomposites in dark and light colors have been developed for coating floors and swimming pools. This work aims to emphasize the effect of cement filling on the mechanical parameters, thermal stability, and wettability of acrylic polymer. The preparation was carried out using the casting method from acrylic polymer coating solution, which was added to cement nanoparticles (65 nm) with weight concentrations of (0, 1, 2, 4, and 8 wt%) to achieve high-quality specifications and good adhesion. Maximum impact strength and Hardness shore A were observed at cement ratios of 2 wt% and 4 wt%, respectively. Changing the filling ratio has a significant effect on the strain of the nanocomposites. The contact angle was i
... Show MoreAn aromatic ester containing two azo groups namely p-nitro phenyl azo-β-naphthyl-(4'-azobenzoic acid)-4-benzoate was synthesized by esterfiaction of 4,4'-azo dibenzoic acid with p-nitro phenyl azo-β-naphthol. Synthesized ester was characterized by CHN-Elemental analysis, FTIR, 1H NMR and 13C NMR. A modified PVA polymer was obtained by grafting 10 g of PVA-polymer via partial esterification with (2, 3, 4 g) p-nitro phenyl azo-1-naphthyl-4-azobenzoic acid)-4-azo benzoate. Grafting PVA-polymer behaviours was studied, by physical measurements (solubility, swelling), thermal properties (DSC) and tensile.
A numerical model for Polypropylene 575 polymer melts flow along the solid conveying screw of a single screw extruder under constant heat flux using ANSYS-FLUENT 17.2 software has been conducted. The model uses the thermophysical properties such as Viscosity, thermal conductivity, Specific heat and density of polypropylene 575 that measured as a function of temperature, and residence time data for process simulation. The numerical simulation using CFD models for single screw extruder and the polymer extrusion was analysed for parameters such as (thermal conductivity, specific heat, density and viscosity) reveals a high degree of similarity to experimental data measured. The most important outcome of this study is that geometrical, parame
... Show MoreIn this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth