Preferred Language
Articles
/
ARYWGIcBVTCNdQwChzar
Experimental Investigation of Skirt Footing Subjected to Lateral Loading
...Show More Authors
Background:

The skirt foundation is one of the powerful types of foundations to resist the lateral loads produced from natural forces, such as earthquakes and wind action, or from the type of structures, such as oil platforms and offshore wind turbines.

Objective and Methodology:

This research experimentally investigated the response of skirted footing resting on sandy soil of different states to lateral applications of loads on a small-scale physical model manufactured for this purpose. The parameters studied are the distance between the footing and the skirt and its depth.

Results and Conclusion:

The results show that the presence of the skirt behind the footing loads to an increase in bearing load and a reduction in the lateral movement whereas the skirt near or adjacent to the footing edge causes maximum increases in bearing load and reduction in lateral movement, for skirted footing. The ratio between the wall distance and the width of the footing has no effect when it is greater than one. On the other hand, the state of the soil influences the bearing load and lateral movement with different ratio of wall distance and wall depth to the width of the footing, especially when the wall distance to the footing width is less than one and the state of the soil has no effect on the bearing load and lateral movement when the ratio is more than one.

Crossref
View Publication
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
EXPERIMENTAL AND THEORETICAL STUDY OF TWO-PHASE HEAT PIPE
...Show More Authors

In this study, thermal characteristics of a two-phase closed heat pipe were investigated experimentally and theoretically. A two-phase closed heat pipe (copper container, Fluorocarbon FC-72 (C6F14) working fluid) was fabricated to examine its performance under the effect of input heat flux range of 250–1253 W/m2 , 70% fill charge ratio and various tilt angles. The temperature distribution along the heat pipe, input heat to evaporator section, and output heat from condenser were monitored. A comprehensive mathematical model was developed to investigate the steadystate heat transfer performance of a two-phase closed heat pipe. A steady state analytical model, is presented to determine important parameters on the design of two-phase close

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
EXPERIMENTAL AND NUMERICAL STRESS ANALYSIS OF INVOLUTE SPLINED SHAFT
...Show More Authors

In this study, the induced splined shaft teeth contact and bending stresses have been investigated numerically using finite element method(Ansys package version 11.0) with changing the most effecting design parameter,(pressure angle, teeth number, fillet radius and normal module), for internal and external splined shaft. Experimental work has been achieved using two dimensional photoelastic techniques to get the contact and bending stresses; the used material is Bakelite sheet type “PSM-4”.
The results of numerical stress analysis indicate that, the increasing of the pressure angle and fillet radius decrease the bending stress and increase the contact stress for both internal and external spline shaft teeth while the increasing of

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Experimental study of some shielding parameters for composite shields
...Show More Authors

View Publication
Scopus (11)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Study on the Effect of the Curvature of Solar Collector on Wind Loading Coefficients and Dynamic Response of Solar Collector
...Show More Authors

In the current research, the work concentrated on studying the effect of curvature of solar parabolic trough solar collector on wind loading coefficients and dynamic response of solar collector. The response of collector to the aerodynamic loading was estimated numerically and experimentally. The curvature of most public parabolic trough solar collectors was investigated and compared. The dynamic response of solar collector due to wind loading was investigated by using numerical solution of fluid-structure interaction concept. The experimental work was done to verify the numerical results and shows good agreement with numerical results. The numerical results were obtained by using finite element software package (ANSYS 14). It was found

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Experimental Study of a Biomechanical Behaviour of Rat Patellar Tendon
...Show More Authors

Tendon is important structure of the human body, since it can sustain tensile loading. The primary function of this tissue is to stabilize the joints they attached to it during daily activities. As well as, tendon has viscoelastic properties that can determine their response to loading and restrict the potential of injuries. One of the major points that this paper works with is the study of the biomechanical behaviour of tendon in response to tensile loading to describe their biological behaviour. Also, conclude the mathematical expression that may illustrate the tendon behaviour. All of the experiments were made in Physiology laboratories / Medical College/ Al- Nahrain University on ten rats "Rattus Norvegicus" of [108- 360] gm weight f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Experimental Study of Solar Still Under Influence of Various Conditions
...Show More Authors

In the present work, experimental tests was done to explain the effect of insulation and water level on the yield output. Linear basin, single slope solar still used to do this purpose. The test was done from May to August 2017 in Mosul City-Iraq (Latitude: Longitude: Elevation: 200 m, and  South-East face). Experimental results showed that the yield output of the still increased by 20.785% and 19.864% in case of using thermal insulation at 4cm and 5cm respectively, also the yield output decrease by 15.134% as the water level increase from 4 to 5cm, with the presence of insulation and 14.147% without it. It has been conclude that the insulation and water level play important role in the process of passive

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Investigation of Thermal Stress Distribution in Laser Spot Welding Process
...Show More Authors

The objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses  and dimensions of the laser w

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Aip Conference Proceedings
Investigation hydraulic performance of splash fills packing in cooling tower
...Show More Authors

Heat is one of the most energy forms emitted to atmosphere by industrial processes. Water is considered to be the best material to reduce heat energy since its available in nature in abundance and has the ability to absorb heat efficiently. Cooling towers are ideal alternatives to re-cool hot water instead of throwing it especially in places that lack natural water resources or when there are environmental precautions because water with high temperature would be harmful to the ecosystem when it recycled to natural resources such as rivers and lakes. Also, cooling towers considered economically feasible when using west water. This paper interests with hydraulic characteristics of a counter flow wet cooling tower which was investigated experi

... Show More
View Publication
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Chemical Industry And Chemical Engineering Quarterly
Electrochemical harvesting of microalgae꞉ Parametric and cost-effectivity comparative investigation
...Show More Authors

The cost of microalgae harvesting constitutes a heavy burden on the commercialization of biofuel production. The present study addressed this problem through economic and parametric comparison of electrochemical harvesting using a sacrificial electrode (aluminum) and a nonsacrificial electrode (graphite). The harvesting efficiency, power consumption, and operation cost were collected as objective variables as a function of applied current and initial pH of the solution. The results indicated that high harvesting efficiency obtained by using aluminum anode is achieved in short electrolysis time. That harvesting efficiency can be enhanced by increasing the applied current or the electrolysis time for both electrode materials, where 98

... Show More
View Publication
Scopus (13)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Investigation and Study of Photonic Current Rate in Bremsstrahlung process
...Show More Authors

In this paper, we investigate and study quantum theoretical of quark-gluon interaction modeling in QGP matter formatted. In theoretical modeling, we can use a flavor number, strength coupling, critical energy Tc = 190 MeV, system energy (400-650)MeV, fugacity of quark and gluon, and photon energy in range of 1-10 GeV parameter to calculation and investigation spectrum of photon rate. We calculation and study the photon rate produced through bremsstrahlung processes from the stable QGP matter. The photon rate production from cg → dgy systems at bremsstrahlung processes are found to be increased with increased fugacity, decreased strength coupling, decreased the photons energy and temperature of system. The photons rate in cg → dgy is inc

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (2)
Scopus Crossref