The international standing has an impact on the strategic importance of the country in its relations with other regional and international countries. The strategic position of Taiwan has an impact on the US-Chinese relations, as it is one of the most important issues that raise dispute between the two countries. The while the Chinese consider Taiwan is an ancient legacy of their republic, and an integral part of it, the Americans consider it as an area linking the U.S. to the Asia-Pacific region, through which it intends to help its allies (Japan and South Korea). Moreover, Taiwan has huge economic importance as it is one of the largest manufacturers of electronic chips and semiconductors. This fact represents one of the most important issues of disagreement between the United States, which seeks to seize these delicate materials in its delicate industries, and China, which is trying to monopolize them to be the only country producing these materials, because it owns 5% of the electronic chip industries, and Taiwan owns 75% of its industries in the world. If the Chinese succeed in returning Taiwan, they will acquire thin industries at a rate of 80% of the total industries in the world.
The idea of using slender Reinforced Concrete (RC) columns with cross-shaped (+-shaped) instead of columns with square-shaped was discussed in this paper. The use of +-shaped columns provides many architectural and structural advantages, such as avoiding prominent columns edges and improved the structural response of member. Therefore, this study explores the structural response of slender +-shaped columns experimentally and numerically by nonlinear finite element analysis using Abaqus simulation tools. The results showed an excellent convergence in strength between numerical and test results with an average standard deviation of 0.05 and 0.07. Besides that, the use of +-shaped column
In earthquake engineering problems, uncertainty exists not only in the seismic excitations but also in the structure's parameters. This study investigates the influence of structural geometry, elastic modulus, mass density, and section dimension uncertainty on the stochastic earthquake response of a multi-story moment resisting frame subjected to random ground motion. The North-south component of the Ali Gharbi earthquake in 2012, Iraq, is selected as ground excitation. Using the power spectral density function (PSD), the two-dimensional finite element model of the moment resisting frame's base motion is modified to account for random ground motion. The probabilistic study of the moment resisting frame structure using stochastic fin
... Show MoreIn recent years, there has been a very rapid development in the field of clean energy due to the huge increase in the demand, which prompted the manufacturers and the designers to increase the efficiency and operating life of the energy systems and especially for wind turbine. It can be considered that the control unit is the main key of the wind turbines. Consequently, it’s essential to understanding the working principle of this unit and spotlight on the factors which influence significantly on the performance of wind turbine system. Simulink technique is proposed to find the response of the wind turbine system under different working conditions. In this paper, it was investigated
The purpose of this experiment was to determine the relationship between the path coefficient and seed rate for four different barley cultivars (Amal, Ibaa 265, Ibaa 99, and Buhooth 244) during the 2019-2020 winter season. The experiment was carried out using a split plot design with three replications according to a randomized complete block design (RCBD). The highest positive thru effect on grain yield was found for flag leaf area and harvest index at aseeding rate of 130 kg.h-1; the highest positive direct effect on grain yield was found for flag leaf area and plant height at aseeding rate of 160 kg.h-1; and the highest positive direct effe
Static loads exposing to mechanical components can cause cracks, which are lead to form stress concentration regions causing the failure of structure. Generally, from 80% to 90% of structure failure is due to initiation of the cracks. Therefore, it is necessary to repair the crack and reduce its effect on the structure where the effect of the crack is modelled as an additional flexibility to the structure. In the last few years, piezoelectric materials have been considered as one of the most favourable repairing techniques. The piezoelectric material converts the applied voltage on it to a bending moment to counter the bending moment caused by the external load on the beam at the crack location. In this study, the design of the piez
... Show MoreCompaction of triticale grain with three moisture contents (8%, 12%, and 16% wet basis) was measured at five applied pressures (0, 7, 14, 34, and 55 kPa). Bulk density increased with increasing pressure for all moisture contents and was significantly (p < 0.0001) dependent on both moisture content and applied pressure. A Verhulst logistic equation was found to model the changes in bulk density of triticale grain with R2 of 0.986. The model showed similar beha
The dewatering arrangement is required in execution works and it needs more attention due to the additional vertical settlement produced on the adjacent pile foundations. Raft foundations are being increasingly utilized for construction in cases of subsoil conditions with a high water table. Also, soil displacements in adjacent un-braced deep open pit may be a reason for high damages to the close buildings and foundations systems. The aim of this study is to examine the behaviour of piled raft foundations considering different pile locations under the effect of line drain and stage drilling of nearby open foundation pit. The line drain was used as dewatering process through the soil i