Biscuits are a global snack due to their convenience, variety, and durability. Biscuits with nutritious ingredients are in demand as customers become more health conscious. This change led to interest about utilizing agricultural by-products to enhance the nutritional value of widely consumed foods. Mango (Mangifera indica L.), a frequently cultivated tropical fruit, produces vital by-products during its processing, mainly comprising peels and kernels. The by-products, comprising around 35–60% of the mango fruit's weight, are high in bioactive compounds including dietary fiber, polyphenols, carotenoids, and essential fatty acids. Mango peels and kernels, even with their nutritional potential, frequently neglected, resulting in rising environmental waste. This study examines how mango peels and kernels can boost biscuits' nutritional fiber and antioxidant content. Researchers synthesize mango by-product nutritional and functional benefits and extraction and processing technologies. The study also examines mango by-products' sensory and economic effects on biscuits. High fiber and antioxidant content in mango peel powder improve digestion and reduce oxidative stress. With its beneficial fats and polyphenols, mango kernel powder adds nutrition. Health-conscious consumers may choose biscuits with 5–15% mango by-products since they retain or increase flavor, texture, and color. By-products from mangoes reduce food waste and promote a circular economy. Commercial application requires optimizing processing procedures, product quality consistency, and clinical trials to validate health claims. According to this analysis, mango by-products can enable creative and sustainable food production and meet customer demand for health-focused goods.
Metal complexes of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), Zn(II), Hg(II), Pd(II), and Pt(II) with Schiff base ligand (LH) derived from 2,5-dichloroaniline and 2-hydroxy-5-metheylbenzalaldehyde were synthesized and characterized using a variety of spectrophotometric techniques The findings of the spectroscopic analysis indicated that (LH) behaved as a binary coordinating agent to the metal ion by the N and O atoms, and the geometry shape of the complexes was octahedral, with the exception of the Pd and Pt complexes, which had a square planar geometry. Using the DPPH radical scavenging method, we investigated the antimicrobial activity of the compound against Staphylococcus aureus and Escherichia coli, as well as the antifungal activity of t
... Show MoreGingivitis, the initial stage of periodontal disease, is characterised by inflammation driven by dental biofilm and associated with oxidative stress. Matcha tea, a powdered green tea rich in antioxidants, has shown potential health benefits. This study aimed to investigate the effect of Matcha tea consumption on clinical periodontal parameters and salivary antioxidant levels in patients with gingivitis.
A randomised controlled clinical trial was conducted with 41 participants diagnosed with gingivitis.
The depletion of petroleum reserves and increasing environmental concerns have driven the development of eco-friendly asphalt binders. This research investigates the performance of natural asphalt (NA) modified with waste engine oil (WEO) as a sustainable alternative to conventional petroleum asphalt (PA). The study examines NA modified with 10%, 20%, and 30% WEO by the weight of asphalt to identify an optimal blend ratio that enhances the binder’s flexibility and workability while maintaining high-temperature stability. Comprehensive testing was conducted, including penetration, softening point, viscosity, ductility, multiple stress creep recovery (MSCR), linear amplitude sweep (LAS), energy-dispersive X-ray spectroscopy (EDX), F
... Show MoreThe availability of low- cost adsorbent namely Al-Khriet ( a substance found in the legs of Typha Domingensis) as an agricultural waste material, for the removal of lead and cadmium from aqueous solution was investigated. In the batch tests experimental parameters were studied, including adsorbent dosage between (0.2-1) g, initial metal ions concentration between (50-200) ppm (single and binary) and contact time (1/2-6) h. The removal percentage of each ion onto Al-Khriet reached equilibrium in about 4 hours. The highest adsorption capacity was for lead (96%) while for cadmium it was (90%) with 50 ppm ions concentration, 1 g dosage of adsorbent and pH 5.5. Adsorption capacity in the binary mixture were reduce at about 8% for lead a
... Show MoreIn the recent years the research on the activated carbon preparation from agro-waste and byproducts have been increased due to their potency for agro-waste elimination. This paper presents a literature review on the synthesis of activated carbon from agro-waste using microwave irradiation method for heating. The applicable approach is highlighted, as well as the effects of activation conditions including carbonization temperature, retention period, and impregnation ratio. The review reveals that the agricultural wastes heated using a chemical process and microwave energy can produce activated carbon with a surface area that is significantly higher than that using the conventional heating method.
G-system composed of three isolates G3 ( Bacillus),G12 ( Arthrobacter )and G27 ( Brevibacterium) was used to detect the mutagenicity of the anticancer drug, cyclophosphamide (CP) under conditions similar to that used for standard mutagen, Nitrosoguanidine (NTG). The CP effected the survival fraction of isolates after treatment for 15 mins using gradual increasing concentrations, but at less extent comparing to NTG. The mutagenic effect of CP was at higher level than that of NTG when using streptomycin as a genetic marker, but the situation was reversed when using rifampicin resistant as a report marker. The latter effect appeared upon recording the mutagen efficiency (ie., number of induced mutants/microgram of mutagen). Measuring the R
... Show MoreStaphylococcus Sp.is the most common type of bacteria found in contamination place, we design this
study to compare the contamination accident between two hospitals in Baghdad.One of them isthe Burns
Specialist Hospital in the Medical CityinRusafa and another one is Al-Karama Hospital in Karkh. The
samples were collected fromOperativeWard No1 (OW1), Operative Ward No2 (OW2), Consulting Pharmacy
(CP), Emergency Room (ER), Reception Room (RR), Women's Ward (WW) and Men's Ward (MW).The
samples were taken from inside each clinical unit, surfaces, food, and air. The results showed that the
number of samples containing Staphylococcus sp. bacteria is 81, including 45 belonging to Al-Karama Burns
Ward Ho
1, 3, 4-oxadiazole-5-thion ring (2) successfully formed at position six of 2-methylphenol and five of their thioalkyl (3a-e). Furthermore 6-(5-(Aryl)-1, 3, 4-oxadiazol-2-yl)-2-methylphenol (5a-i) were formed at position six by two method. The first method was from cyclization their correspondinghydrazones (4a-e) of 2-hydroxy-3-methylbenzohydrazide (1) using bromine in glacial acetic acid. The second method was from cyclization the hydrazide with aryl carboxylic acid in the presence of phosphorusoxy chloride. The newly synthesized compounds were characterized from their IR, NMR and mass spectra. The antioxidant properties of these compounds were screened by 2, 2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) a
... Show MoreNewly 4-amino-1,2,4-triazole-3-thione ring 2 was formed at position six of 2-methylphenol from the reaction of 6-(5-thio1,3,4-oxadiazol-2-yl)-2-methylphenol 1 with hydrazine hydrochloride in the presence of anhydrase sodium acetate. Seven newly fused heterocyclic compounds were synthesized from compound 2. First fused heterocyclic was 6-(6-(3,5-di-tertbutyl-4-hydroxyphenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl)-2-methylphenol 3 synthesized from reaction compound 2 with 3,5-di-tert-butyl-4-hydroxybenzoic acid in POCl3. Reaction compound 2 with bromophencylbromide afford 6-(6-(4-bromophenyl)-5H-[1,2,4]triazolo[3,4-b][1,3,4]-thiadiazin-3-yl)-2-methylphenol 4. 6-(6-thio-1,7a-dihydro-[1,2,4] triazolo[3,4-b][1,3,4]-thiadiazol-3-yl)-2
... Show More