Preferred Language
Articles
/
ABfnypEBVTCNdQwCW5tL
Experimental Study to Investigate the Performance-Related Properties of Modified Asphalt Concrete Using Nanomaterials Al2O3, SiO2, and TiO2
...Show More Authors

The dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably improves binder viscosity by about 138% and reduces penetration by approximately 40.8% at 8% nanomaterial (NM) content, significantly boosting hardness and consistency. NS also enhances Marshall stability and decreases air voids, increasing the mix’s durability. For moisture resistance, NS at 8% NM content elevates the Tensile Strength Ratio (TSR) to 91.0%, substantially surpassing the 80% standard. Similarly, NA and NT also show improved TSR values at 8% NM content, with 88.0% and 84.1%, respectively. Additionally, NS, NA, and NT reduce permanent deformation by 82%, 69%, and 64% at 10,000 cycles at 8% NM content, illustrating their effectiveness in mitigating pavement distress. Notably, while higher NM content generally results in better performance across most tests, the optimal NM content for fatigue resistance is 4% for NS and 6% for both NA and NT, reflecting their peak performance against various types of pavement distresses. These results highlight the significant advantages of nanoparticles in improving asphalt’s mechanical properties, workability, stability, and durability. The study recommends further field validation to confirm these laboratory findings and ensure that enhancements translate into tangible improvements in real-world pavement performance and longevity.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Information hiding in digital video using DCT, DWT and CvT
...Show More Authors

Publication Date
Wed Jan 01 2025
Journal Name
Fusion: Practice And Applications
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jan 02 2012
Journal Name
Journal Of Engineering
3-D Object Recognition using Multi-Wavelet and Neural Network
...Show More Authors

This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com

... Show More
View Publication
Publication Date
Thu Jul 25 2019
Journal Name
Advances In Intelligent Systems And Computing
Solving Game Theory Problems Using Linear Programming and Genetic Algorithms
...Show More Authors

View Publication
Scopus (22)
Crossref (16)
Scopus Crossref
Publication Date
Wed Aug 11 2021
Journal Name
International Journal Of Interactive Mobile Technologies (ijim)
Image Denoising Using Multiwavelet Transform with Different Filters and Rules
...Show More Authors

<p class="0abstract">Image denoising is a technique for removing unwanted signals called the noise, which coupling with the original signal when transmitting them; to remove the noise from the original signal, many denoising methods are used. In this paper, the Multiwavelet Transform (MWT) is used to denoise the corrupted image by Choosing the HH coefficient for processing based on two different filters Tri-State Median filter and Switching Median filter. With each filter, various rules are used, such as Normal Shrink, Sure Shrink, Visu Shrink, and Bivariate Shrink. The proposed algorithm is applied Salt&amp; pepper noise with different levels for grayscale test images. The quality of the denoised image is evaluated by usi

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Dec 17 2019
Journal Name
Lecture Notes In Electrical Engineering
Aspect Categorization Using Domain-Trained Word Embedding and Topic Modelling
...Show More Authors

Aspect-based sentiment analysis is the most important research topic conducted to extract and categorize aspect-terms from online reviews. Recent efforts have shown that topic modelling is vigorously used for this task. In this paper, we integrated word embedding into collapsed Gibbs sampling in Latent Dirichlet Allocation (LDA). Specifically, the conditional distribution in the topic model is improved using the word embedding model that was trained against (customer review) training dataset. Semantic similarity (cosine measure) was leveraged to distribute the aspect-terms to their related aspect-category cognitively. The experiment was conducted to extract and categorize the aspect terms from SemEval 2014 dataset.

View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Tue Oct 01 2013
Journal Name
Sensors And Actuators A: Physical
Enhanced energy harvesting using multiple piezoelectric elements: Theory and experiments
...Show More Authors

View Publication
Scopus (65)
Crossref (59)
Scopus Clarivate Crossref
Publication Date
Fri Jul 23 2021
Journal Name
International Journal Of Dentistry
Predicting Canine and Premolar Mesiodistal Crown Diameters Using Regression Equations
...Show More Authors

Objectives. The current study aimed to predict the combined mesiodistal crown widths of maxillary and mandibular canines and premolars from the combined mesiodistal crown widths of maxillary and mandibular incisors and first molars. Materials and Methods. This retrospective study utilized 120 dental models from Iraqi Arab young adult subjects with normal dental relationships. The mesiodistal crown widths of all teeth (except the second molars) were measured at the level of contact points using digital electronic calipers. The relation between the sum mesiodistal crown widths of the maxillary and mandibular incisors and first molars and the combined mesiodistal crown widths of the maxillary and mandibular canines and premolars was as

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
3-D OBJECT RECOGNITION USING MULTI-WAVELET AND NEURAL NETWORK
...Show More Authors

This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Stamps extraction using local adaptive k- means and ISODATA algorithms
...Show More Authors

<span>One of the main difficulties facing the certified documents documentary archiving system is checking the stamps system, but, that stamps may be contains complex background and surrounded by unwanted data. Therefore, the main objective of this paper is to isolate background and to remove noise that may be surrounded stamp. Our proposed method comprises of four phases, firstly, we apply k-means algorithm for clustering stamp image into a number of clusters and merged them using ISODATA algorithm. Secondly, we compute mean and standard deviation for each remaining cluster to isolate background cluster from stamp cluster. Thirdly, a region growing algorithm is applied to segment the image and then choosing the connected regi

... Show More
View Publication
Scopus (14)
Crossref (6)
Scopus Crossref