The dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably improves binder viscosity by about 138% and reduces penetration by approximately 40.8% at 8% nanomaterial (NM) content, significantly boosting hardness and consistency. NS also enhances Marshall stability and decreases air voids, increasing the mix’s durability. For moisture resistance, NS at 8% NM content elevates the Tensile Strength Ratio (TSR) to 91.0%, substantially surpassing the 80% standard. Similarly, NA and NT also show improved TSR values at 8% NM content, with 88.0% and 84.1%, respectively. Additionally, NS, NA, and NT reduce permanent deformation by 82%, 69%, and 64% at 10,000 cycles at 8% NM content, illustrating their effectiveness in mitigating pavement distress. Notably, while higher NM content generally results in better performance across most tests, the optimal NM content for fatigue resistance is 4% for NS and 6% for both NA and NT, reflecting their peak performance against various types of pavement distresses. These results highlight the significant advantages of nanoparticles in improving asphalt’s mechanical properties, workability, stability, and durability. The study recommends further field validation to confirm these laboratory findings and ensure that enhancements translate into tangible improvements in real-world pavement performance and longevity.
In this study, aromatic polyamide reverse osmosis membranes were used to remove zinc ions from electroplating wastewater. Influence of different operating conditions such as time, zinc concentration and pressure on reverse osmosis process efficiency was studied. The experimental results showed, concentration of zinc in permeate increase with increases of time from 0 to 70 min, and flux of water through membrane decline with time. While, the concentrations of zinc in permeate increase with the increase in feed zinc concentration (10–300 mg/l), flux decrease with the increment of feed concentration. The raise of pressure from 1 to 4 bar, the zinc concentration decreases and the flux increase. The highest recovery percentage was fou
... Show MoreIn this work; Silicon dioxide (SiO2) were fabricated by pulsed
laser ablation (PLA). The electron temperature was calculated by
reading the data of I-V curve of Langmuir probe which was
employed as a diagnostic technique for measuring plasma properties.
Pulsed Nd:YA Glaser was used for measuring the electron
temperature of SiO2 plasma plume under vacuum environment with
varying both pressure and axial distance from the target surface. The
electron temperature has been measured experimentally and the
effects of each of pressure and Langmuir probe distance from the
target were studied. An inverse relationship between electron
temperature and both pressure and axial distance was observed.
The experimental and theoretical methods were studied for inhibition of the corrosion titanium in HCl by using neomycin sulfate drug. The results of neomycin sulfate drug had good corrosion protection for titanium in hydrochloric acid and the inhibition efficiency (%IE) increasing with increasing concentration of drug because the neomycin sulfate drug had adsorption from acid solution on surface of titanium metal. The program of hyperchem-8.07 was used for theoretical study of the drug by molecular mechanics and semi-empirical calculations. Quantum chemical was studied drug absorption and electron transferred from the drug to the Titanium metal, also inhibition potentials of drug attachment with the (LUMO-HOMO) energy gap,
... Show MoreUse Almtafr axis to study the response component that isolates gave a positive response to the use of standard Almtafr which leads to lower the temperature and the number of cells at a temperature suitable Rifampicin resistant less than that TJ and similarly reflected on the frequency of mutations induced
This article reviews the construction of organic solar cell (OSC) and characterized their optical and electrical properties, where indium tin oxide (ITO) used as a transparent electrode, “Poly (3-hexylthiophene- 2,5-diyl) P3HT / Poly (9,9-dioctylfluorene-alt-benzothiadiazole) F8BT” as an active layer and “Poly(3,4-ethylenedioxythiophene)-poly (styrene sulfonate)” PEDOT: PSS which is referred to the hole transport layer. Spin coating technique was used to prepared polymers thin film layers under ambient atmosphere to make OSC. The prepared samples were characterized after annealing process at (80 ͦ C) for (30 min) under non-isolated circumference. The results show a value of filling factor (FF) of (2.888), (0.233) and (0.28
... Show MoreAbstract: The increased interest in developing new photonic devices that can support high data rates, high sensitivity and fast processing capabilities for all optical communications, motivates a pre stage pulse compressor research. The pre-stage research was based on cascading single mode fiber and polarization maintaining fiber to get pulse compression with compression factor of 1.105. The demand for obtaining more précised photonic devices; this work experimentally studied the behavior of Polarization maintaining fiber PMF that is sandwiched between two cascaded singe mode fiber SMF and fiber Bragg gratings FBG. Therefore; the introduced interferometer performed hybrid interference of both Mach-Zehnder
... Show MoreGypsum Plaster is an important building materials, and because of the availabilty of its raw materials. In this research the effect of various additives on the properties of plaster was studied , like Polyvinyl Acetate, Furfural, Fumed Silica at different rate of addition and two types of fibers, Carbon Fiber and Polypropylene Fiber to the plaster at a different volumetric rate. It was found that after analysis of the results the use of Furfural as an additive to plaster by 2.5% is the optimum ratio of addition to that it improved the flexural Strength by 3.18%.
When using Polyvinyl Acetate it was found that the ratio of the additive 2% is the optimum ratio of addition to the plaster, because it improved the value of the flexural stre
In this paper, we have investigated some of the most recent energy efficient routing protocols for wireless body area networks. This technology has seen advancements in recent times where wireless sensors are injected in the human body to sense and measure body parameters like temperature, heartbeat and glucose level. These tiny wireless sensors gather body data information and send it over a wireless network to the base station. The data measurements are examined by the doctor or physician and the suitable cure is suggested. The whole communication is done through routing protocols in a network environment. Routing protocol consumes energy while helping non-stop communic
... Show MoreBackground: Poly (methylmethacrylate) is not ideal in every aspect and has disadvantages such as insufficient surface hardness, increase water sorption and poor impact resistance and the latter being the primary cause of fracture of denture base resins. The aim of this study was to evaluate the effect of addition of silanized nano- hydroxyapatite (HA) on some properties of heat cured acrylic denture base material. Materials and methods: HA nano particles were first silanized with ï§MPS (tri methacryloxypropyletrimethoxy silane coupling agent) then ultrasonicated with methylmethacrylate (monomer) to disperse agglomerated nano particles and mixed with polymer. 2% by wt of HA nano particles was selected as the best concentration that add
... Show More