The importance of specifying proper aggregate grading for achieving satisfactory performance in pavement applications has long been recognized. To improve the specifications for superior performance, there is a need to understand how differences in aggregate gradations within the acceptable limits may affect unbound aggregate base behavior. The effects of gradation on strength, modulus, and deformation characteristics of high-quality crushed rock base materials are described here. Two crushed rock types commonly used in constructing heavy-duty granular base layers in the State of Victoria, Australia, with three different gradations each were used in this study. The gradations used represent the lower, medium, and upper gradation limits for heavy-duty base materials specified by the State of Victoria’s road agency (VicRoads). Modified compaction tests were conducted first to determine the moisture-density relationship of all mixes. Further, California bearing ratio (CBR), unconfined compressive strength (UCS), and repeated load triaxial (RLT) tests were then performed to study the effects of different gradations on strength, resilient modulus (MR), and deformation resistance. Further, permanent deformation and MR results were modeled using two popular models for each to explain the effect of gradation on the mixtures’ characteristics. The results indicate that the gradation that provides the best characteristics varies depending on the type of material used. For the materials tested here, coarse and medium gradations provide the best mixture characteristics in relation to CBR, MR, and permanent deformation. Fine gradation mixtures of these materials have lower values of these measures but are still considered acceptable considering relevant specification for the intended application.
Through an experimental program of eighteen specimens presented in this paper, the bond strength between reinforcing bar and rubberized concrete was produced by adding waste tire rubber instead of natural aggregate. The fine and coarse aggregate was replaced in 0%, 25%, and 50% with the small pieces of a waste tire. Natural aggregate replacement ratio, rebar size, embedded rebar length, the rebar yield stress of rebar, cover, and concrete compressive strength were studied in this investigation. Ultimate bond stress, bond stress-slip response, and failure modes were presented. The experimental results reported that a reduction of 19% in bond strength was noticed in 50% replaced rubberized concrete compared with convention
... Show MoreHighly plastic soils exhibit unfavorited properties upon saturation, which produce different defects in engineering structures. Attempts were made by researchers to proffer solutions to these defects by experimenting in practical ways. This included various materials that could possibly improve the soil engineering properties and reduce environmental hazards. This paper investigates the strength behavior of highly plastic clay stabilized with brick dust. The brick dust contents were 10%, 20%, and 30% by dry weight of soil. A series of linear shrinkage and unconfined compression tests were carried out to study the effect of brick dust on the quantitative amount of shrinkage experienced by highly plastic clay and the undra
... Show MoreHigh performance work systems and general industrial enterprise performance
<span>Digital audio is required to transmit large sizes of audio information through the most common communication systems; in turn this leads to more challenges in both storage and archieving. In this paper, an efficient audio compressive scheme is proposed, it depends on combined transform coding scheme; it is consist of i) bi-orthogonal (tab 9/7) wavelet transform to decompose the audio signal into low & multi high sub-bands, ii) then the produced sub-bands passed through DCT to de-correlate the signal, iii) the product of the combined transform stage is passed through progressive hierarchical quantization, then traditional run-length encoding (RLE), iv) and finally LZW coding to generate the output mate bitstream.
... Show MoreEffect of zinc chloride on the immune functions was studied in male albino mice aged 6-7 weeks. It was administrated orally (1ml) in three concentrations (0.5ppm, 1ppm, 2ppm) for 9 days. The results showed that the first concentration was not effective comparing with control while the second concentration increased the enhancement of immune system and the cell third one killed the mice 6 hours post administration, so we can conclude that the high dose of ZnCl2 could be harmful for all metabolism.
The effect of insecticide lamda cyhalothrin on Allium cepa L.root meristem were studied cytogenetically .Using three concentrations of the insecticide 5%, 7.5%, 10% at 6,12,24hours treatments . The insecticide significantly reduced the mitotic index at all concentrations. Moreover showed its ability to induced C – metaphase in 10% .The effects were also caused chromosome aberration like stickness in anaphase, telophase, binucleated cells, Micronuclei formation. These alternations indicating that this insecticide was effective in producing disturbance of spindle fibers.
The toxicity effect of some heavy metals (Lead, Cadmium, Copper, and Zinc) on the growth of alga Scenedesmus dimorphus which belongs to the Division of Chlorophyta was studied and depended on the total cell number . The growth rate and doubling time were also calculated accordingly in present of absent of the the heavy metals . There were differences in toxic effects of the metals (p<0.05) . The growth was decreased gradually with alga when exposured to Lead at 15,20 and 25 mg/l in comparison with the control , mean while 30 mg/l caused an acute decrease in growth . Treating the alga with 0.05,0.1,0.5 mg/l concentration of Cadmium the number of cells decreased while at 1 mg/l the effect was more pronounced . As for Copper the conc
... Show MoreExploring the antibacterial potential of neem oil (Azadirachta indica) in combination with gentamicin (GEN) against pathogenic molds, especially Pseudomonas aeruginosa, has drawn concern due to the quest for natural treatment options against incurable diseases. Prospective research directions include looking for natural cures for many of the currently incurable diseases available now. microbial identification system, were used to identify the isolates. The research utilized a range of methods, such as the diffusion agar well (AWD) assays, TEM (transmission electron microscopy) analysis, minimum inhibitory concentration (MIC) assays, and real-time PCR (RT-qPCR) to analyze bacterial expression and the antibacterial action of neem oil (Azadira
... Show More