The importance of specifying proper aggregate grading for achieving satisfactory performance in pavement applications has long been recognized. To improve the specifications for superior performance, there is a need to understand how differences in aggregate gradations within the acceptable limits may affect unbound aggregate base behavior. The effects of gradation on strength, modulus, and deformation characteristics of high-quality crushed rock base materials are described here. Two crushed rock types commonly used in constructing heavy-duty granular base layers in the State of Victoria, Australia, with three different gradations each were used in this study. The gradations used represent the lower, medium, and upper gradation limits for heavy-duty base materials specified by the State of Victoria’s road agency (VicRoads). Modified compaction tests were conducted first to determine the moisture-density relationship of all mixes. Further, California bearing ratio (CBR), unconfined compressive strength (UCS), and repeated load triaxial (RLT) tests were then performed to study the effects of different gradations on strength, resilient modulus (MR), and deformation resistance. Further, permanent deformation and MR results were modeled using two popular models for each to explain the effect of gradation on the mixtures’ characteristics. The results indicate that the gradation that provides the best characteristics varies depending on the type of material used. For the materials tested here, coarse and medium gradations provide the best mixture characteristics in relation to CBR, MR, and permanent deformation. Fine gradation mixtures of these materials have lower values of these measures but are still considered acceptable considering relevant specification for the intended application.
Cadmium Oxide films have been prepared by vacuum evaporation technique on a glass substrate at room temperature. Structural and optical properties of the films are studied at different annealing temperatures (375 and 475) ËšC, for the thickness (450) nm at one hour. The crystal structure of the samples was studied by X- ray diffraction. The highest value of the absorbance is equal to (78%) in the wavelength (530) nm, at annealing temperature (375) ËšC. The value of at a rate of deposition is (10) nm/s. The value of optical energy gap found is equal to (2.22) eV.
Background: Alginate impression material is the irreversible hydrocolloid material that is widely used in dentistry. The contact time between alginate and gypsum cast could have a detrimental effect on the properties of the gypsum cast. The objective of this study is to evaluate the impact of various contact time intervals of Alginate impressions & type III dental stone on surface properties of stone cast. Materials and Methods: Time intervals tested were 1hour, 6 hours and 9 hours. Surface properties of stone cast evaluated were surface detail reproduction, hardness and roughness. Surface detail reproduction was determined using cylindrical brass test block in accordance with ISO 1563. Surface roughness was measured by profilometer
... Show MoreIn this work, (CdO)1-x (CoO)x thin films were prepared on glass slides by laser-induced plasma using Nd:YAG laser with (λ=1064 nm) and duration (9 ns) at different laser energies (200-500 mJ) with ratio (x=0.5), The influence of laser energy on structural and optical properties has been studied. XRD patterns show the films have a structure of polycrystalline wurtzite. As for AFM tests results for the topography of the surface of the film, where the results showed that the grain size and the average roughness increase with increasing laser energy. The optical properties of all films were also studied and the results showed that the absorption coefficient for within the wavelength range (280-1100 nm), The value of the optical power gap fo
... Show MoreThe issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator
... Show MoreThe main objective of this study is to characterize the main factors which may affect the behavior of segmental prestressed concrete beams comprised of multi segments. The 3-D finite element program ABAQUS was utilized. The experimental work was conducted on twelve simply supported segmental prestressed concrete beams divided into three groups depending on the precast segments number. They all had an identical total length of 3150mm, but each had different segment numbers (9, 7, and 5 segments), in other words, different segment lengths. To simulate the genuine fire disasters, nine beams were exposed to high-temperature flame for one hour, the selected temperatures were 300°C (572°F), 500°C (932°F) and 700°C (1292°F) as recomm
... Show More