The importance of specifying proper aggregate grading for achieving satisfactory performance in pavement applications has long been recognized. To improve the specifications for superior performance, there is a need to understand how differences in aggregate gradations within the acceptable limits may affect unbound aggregate base behavior. The effects of gradation on strength, modulus, and deformation characteristics of high-quality crushed rock base materials are described here. Two crushed rock types commonly used in constructing heavy-duty granular base layers in the State of Victoria, Australia, with three different gradations each were used in this study. The gradations used represent the lower, medium, and upper gradation limits for heavy-duty base materials specified by the State of Victoria’s road agency (VicRoads). Modified compaction tests were conducted first to determine the moisture-density relationship of all mixes. Further, California bearing ratio (CBR), unconfined compressive strength (UCS), and repeated load triaxial (RLT) tests were then performed to study the effects of different gradations on strength, resilient modulus (MR), and deformation resistance. Further, permanent deformation and MR results were modeled using two popular models for each to explain the effect of gradation on the mixtures’ characteristics. The results indicate that the gradation that provides the best characteristics varies depending on the type of material used. For the materials tested here, coarse and medium gradations provide the best mixture characteristics in relation to CBR, MR, and permanent deformation. Fine gradation mixtures of these materials have lower values of these measures but are still considered acceptable considering relevant specification for the intended application.
There is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show MoreThe aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreRecently a large number of extensive studies have amassed that describe the removal of dyes from water and wastewater using natural adsorbents and modified materials. Methyl orange dye is found in wastewater streams from various industries that include textiles, plastics, printing and paper among other sources. This article reviews methyl orange adsorption onto natural and modified materials. Despite many techniques available, adsorption stands out for efficient water and wastewater treatment for its ease of operation, flexibility and large-scale removal of colorants. It also has a significant potential for regeneration recovery and recycling of adsorbents in comparison to other water treatment methods. The adsorbents described herein were
... Show MoreThis study was carried out to investigate the possibility of chickpea soaked water as a substitute for yeast in dough fermentation and its effects on sensory properties of the laboratory loaf bread. Chickpea was soaked for 24,48 and 72 hours at room temperature and used in proportion with or without yeast in dough fermentation . The results revealed that , as the percentage of soaked chickpea water substitution increased, the volume of the produced loaf bread decreased as compared with the control treatment (only yeast ).Best results were obtained by using soaked chickpea water for 24 hours in proportion of 1:1 soaked chickpea water : yeast regarding the sensory properties ,volume and leavening of the loaf bread.
Keywords: chickpea so
Background: In this study we evaluate the effect of plasma treatment (oxygen and argon) gas in two different exposure times on the surface of heat cure and light cure acrylic resin. Materials and method: 100 specimens of heat cure and light cure acrylic resin were fabricated. The measurements of the samples were (75mm, 25mm and 4.5mm) length, width and depth respectively with stopper of 3mm depth. Two types of gas used oxygen and argon in (5,10) min by using (DC-glow discharge plasma device) then we apply cold cure soft lining material, with the help of Instron machine we test the shear stress value. Results: A highly significant effect after argon and oxygen gases treatment in both 5 and 10 min exposure times on shear bond strength to soft
... Show MoreBackground: This study was conducted to assess the effects of various beverages on the shear bond strength of light-cured orthodontic composite used to bond stainless steel orthodontic brackets on human teeth and to determine the site of bonding failure of this material. Materials and Methods: Fifty extracted human premolars were selected and randomly divided into five equal groups each with 10 teeth according to the beverage type (Control, One Tiger, Milk, Green tea and Coffee). After bonding, the teeth were immersed in specific beverages for 5 minutes twice daily with equal intervening intervals then washed and stored in distilled water at 37º C for the reminder of the day. The process was carried out for 30 days. The samples were then
... Show MoreThis study exposed to use the liquid whey (which was produced from of soft cheese processed) partially or completely instead of milk in fatty cake, this whey residue is still not used, instead it is thrown in rivers which effect different environment and economic problems. Different concentrations was used (25% , 50% , 75% , and 100%) of whey in baked cake , Volume , height and other different properties ( panel taste ) was studied too . Sensory evaluation results showed that an improved in all the character of the baked cake was happen by the used of 25% and 50% of the whey in comparison with the control treatment, the 75% replacement showed a decrease in appearance , texture and tenderness , while the degrees of color and fla
... Show MoreThe improvement of the mechanical soil characteristics of jet grouting technique is very attractive. The jet grouted soil cement columns in soft is a complicated issue because it depends on a number of factors such as, soil nature, mixture, influence among soil and grouting materials, jetting force of nozzle, jet grouting and water flow rate, rotation and lifting speed. This paper discusses the estimation of shear strength parameters of soil-cement column (soilcrete) in soft clayey soil based on the relationships between the unconfined compressive and split tensile strength for the soilcrete and the effect of the jet grouting and water pressure in the values of cohesion and internal f