A Fast Feature Extraction Algorithm for Image and Video Processing
...Show More Authors
Recently, a new secure steganography algorithm has been proposed, namely, the secure Block Permutation Image Steganography (BPIS) algorithm. The new algorithm consists of five main steps, these are: convert the secret message to a binary sequence, divide the binary sequence into blocks, permute each block using a key-based randomly generated permutation, concatenate the permuted blocks forming a permuted binary sequence, and then utilize a plane-based Least-Significant-Bit (LSB) approach to embed the permuted binary sequence into BMP image file format. The performance of algorithm was given a preliminary evaluation through estimating the PSNR (Peak Signal-to-Noise Ratio) of the stego image for limited number of experiments comprised hiding
... Show MoreWireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreThe present study is a hybrid method of studying the effect of plasma on the living tissue by using the image processing technique. This research explains the effect of microwave plasma on the DNA cell using the comet score application, texture analysis image processing and the effect of microwave plasma on the liver using texture analysis image processing. The study was applied on the mice cells. The exposure to the plasma is done by dividing the mice for four groups, each group includes four mice (control group, 20, 50, 90 second exposure to microwave plasma). The exposure to microwave plasma was done with voltage 175v and gas flow on 2 with room temperature; the statistical features are obtained from the comet score images and the textur
... Show MoreDigital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different
... Show MoreSecurity concerns in the transfer of medical images have drawn a lot of attention to the topic of medical picture encryption as of late. Furthermore, recent events have brought attention to the fact that medical photographs are constantly being produced and circulated online, necessitating safeguards against their inappropriate use. To improve the design of the AES algorithm standard for medical picture encryption, this research presents several new criteria. It was created so that needs for higher levels of safety and higher levels of performance could be met. First, the pixels in the image are diffused to randomly mix them up and disperse them all over the screen. Rather than using rounds, the suggested technique utilizes a cascad
... Show MoreFe3O4:Ce thin films were deposited on glass and Si substrates by Pulse Laser Deposition Technique (PLD). Polycrystalline nature of the cubic structure with the preferred orientation of (311) are proved by X-ray diffraction. The nano size of the prepared films are revealed by SEM measurement. Undoped Iron oxide and doped with different concentration of Ce films have direct allowed transition band gap with 2.15±0.1 eV which is confirmed by PL Photoluminescence measurements. The PL spectra consist of the emission band located at two sets of peaks, set (A) at 579±2 nm , and set (B) at 650 nm, respectively when it is excited at an excitation wavelength of 280 nm at room temperature. I-V characteristics have been studied in the dark and under v
... Show MoreOne of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first
... Show More