The Ratawi Oil Field (ROF) is one of Iraq's most important oil fields because of its significant economic oil reserves. The major oil reserves of ROF are in the Mishrif Formation. The main objective of this paper is to assess the petrophysical properties, lithology identification, and hydrocarbon potential of the Mishrif Formation using interpreting data from five open-hole logs of wells RT-2, RT-4, RT-5, RT-6, and RT-42. Understanding reservoir properties allows for a more accurate assessment of recoverable oil reserves. The rock type (limestone) and permeability variations help tailor oil extraction methods, extraction methods and improving recovery techniques. The petrophysical properties were calculated using Interactive Petrophysics software (version 4.5), employing various methods such as density (RHOB), neutron porosity (NPHI), sonic, gamma-ray, resistivity, and caliper logs. The well logs were evaluated and adjusted based on the environmental conditions. The lithology of the formations was identified through Neutron-Density cross plots, which revealing a composition primarily of limestone. The optimum approach for calculating clay volume was the gamma ray method, which indicated approximately 10% clay content. For calibrating effective porosity with core data, the Neutron-Density method proved to be the most accurate, showed values between 12% and 14% in the MB unit. The Archie technique was selected for its compatibility with limestone. Formation water resistivity was estimated from analogies of the southern field of the Mishrif reservoir (RW=0.021). Permeability was calculated using the flow zone indicator method (FZI) with an average between 0.2 and 0.35 md. According to the petrophysical analysis conducted at Mishrif, the formation consists of four units: MA, MB1, MB2, and MC. The most significant hydrocarbon-bearing unit in the formation is MB1.The insights gained from this study not only enhance the understanding of the Mishrif Formation but also contribute to the development of more efficient extraction techniques and improved reservoir management strategies. By optimizing recovery methods based on precise petrophysical and lithological data, the study supports the sustainable and economically viable exploitation of hydrocarbon resources in the ROF and similar reservoirs worldwide. These findings are significant in the broader context of petroleum engineering and reservoir management, as they provide a foundation for improved recovery techniques and sustainable resource management.
The risk assessment for three pipelines belonging to the Basra Oil Company (X1, X2, X3), to develop an appropriate risk mitigation plan for each pipeline to address all high risks. Corrosion risks were assessed using a 5 * 5 matrix. Now, the risk assessment for X1 showed that the POF for internal corrosion is 5, which means that its risk is high due to salinity and the presence of CO, H2S and POF for external corrosion is 1 less than the corrosion, while for Flowline X2 the probability of internal corrosion is 4 and external is 4 because there is no Cathodic protection applied due to CO2, H2S and Flowline X3 have 8 leaks due to internal corrosion so the hazard rating was very high 5 and could be due to salinity, CO2, fluid flow rate
... Show MoreThe current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
Asphaltene is a component class that may precipitate from petroleum as a highly viscous and sticky material that is likely to cause deposition problems in a reservoir, in production well, transportation, and in process plants. It is more important to locate the asphaltene precipitation conditions (precipitation pressure and temperature) before the occurring problem of asphaltene deposition to prevent it and eliminate the burden of high treatment costs of this problem if it happens. There are different models which are used in this flow assurance problem (asphaltene precipitation and deposition problem) and these models depend on experimental testing of asphaltene properties. In this study, the used model was equation of
... Show MoreSadi formation is one of the main productive formations in some of Iraqi oil fields. This formation is characterized by its low permeability values leading to low production rates that could be obtained by the natural flow.
Thus, Sadi formation in Halfaya oil field has been selected to study the success of both of "Acid fracturing" and "Hydraulic fracturing" treatments to increase the production rate in this reservoir.
In acid fracturing, four different scenarios have been selected to verify the effect of the injected fluid acid type, concentration and their effect on the damage severity along the entire reservoir.
The reservoir damage severity has been taken as "Shallow–Medium– Sever
... Show MoreIn the Rumaila oilfields in southern Iraq, the Zubair Formation was deposited in a shallow environment as three main facies, delta plain, backshore, and delta front depositional conditions indicating a transition from delta front and delta plain to a highstand level due to the finning upward mode. The facies of the Zubair clasts show well-sorted quartz arenite sandstone, poorly sorted quartz arenite sandstone, clayey sandstone that has not been properly sorted, sandy shale, and shale lithofacies. The minor lithofacies were identified using well-logging methods (gamma ray, spontaneous potential and sonic logs) and petrography. The Zubair clasts are of transition environment that appears to be transported from freshwater and deposited
... Show MoreEvaluating a reservoir to looking for hydrocarbon bearing zones, by determining the petrophysical properties in two wells of the Yamama Formation in Siba field using Schlumberger Techlog software. Three porosity logs were used to identify lithology using MN and MID cross plots. Shale volume were calculated using gamma ray log in well Sb-6ST1 and corrected gamma ray in well Sb-5B. Sonic log was used to calculate porosity in bad hole intervals while from density log at in-gauge intervals. Moreover, water saturation was computed from the modified Simandoux equation and compared to the Archie equation. Finally, Permeability was estimated using a flow zone indicator. The results show that the Yamama Formation is found to be mainly limest
... Show MoreThe Jeribe Formation, the Jambour oil field, is the major carbonate reservoir from the tertiary reservoirs of the Jambour field in northern Iraq, including faults. Engineers have difficulty organizing carbonate reserves since they are commonly tight and heterogeneous. This research presents a geological model of the Jeribe reservoir based on its facies and reservoir characterization data (Permeability, Porosity, Water Saturation, and Net to Gross). This research studied four wells. The geological model was constructed with the Petrel 2020.3 software. The structural maps were developed using a structural contour map of the top of the Jeribe Formation. A pillar grid model with horizons and layering was designed for each zone. Followin
... Show MoreThe study of Shiranish Formation rocks in southern part of Iraq at Ansab area well (KH-6)
were carried out. The formation is tongued with tayarat formation, which bounded from top
and bottom, the upper tongue at thickness 49m. and tongued at depth (476-525m.) the lower
tongue at thickness 4m. tongued at (541-537m.).
The rocks of this formation were divided into three sedimentary microfacies:
1- Dolomitized formininferal Wackestone facies.
2- Dolomitized formininferal Mudstone facies.
3- Dolostone facies.
34 slides were investigated depending on mineralogical, compositional and biological
processes and compared diagenesis which reflect open marine shelf at lower part of formation
(F.Z.2) (S.M.F.8), but at the