The Ratawi Oil Field (ROF) is one of Iraq's most important oil fields because of its significant economic oil reserves. The major oil reserves of ROF are in the Mishrif Formation. The main objective of this paper is to assess the petrophysical properties, lithology identification, and hydrocarbon potential of the Mishrif Formation using interpreting data from five open-hole logs of wells RT-2, RT-4, RT-5, RT-6, and RT-42. Understanding reservoir properties allows for a more accurate assessment of recoverable oil reserves. The rock type (limestone) and permeability variations help tailor oil extraction methods, extraction methods and improving recovery techniques. The petrophysical properties were calculated using Interactive Petrophysics software (version 4.5), employing various methods such as density (RHOB), neutron porosity (NPHI), sonic, gamma-ray, resistivity, and caliper logs. The well logs were evaluated and adjusted based on the environmental conditions. The lithology of the formations was identified through Neutron-Density cross plots, which revealing a composition primarily of limestone. The optimum approach for calculating clay volume was the gamma ray method, which indicated approximately 10% clay content. For calibrating effective porosity with core data, the Neutron-Density method proved to be the most accurate, showed values between 12% and 14% in the MB unit. The Archie technique was selected for its compatibility with limestone. Formation water resistivity was estimated from analogies of the southern field of the Mishrif reservoir (RW=0.021). Permeability was calculated using the flow zone indicator method (FZI) with an average between 0.2 and 0.35 md. According to the petrophysical analysis conducted at Mishrif, the formation consists of four units: MA, MB1, MB2, and MC. The most significant hydrocarbon-bearing unit in the formation is MB1.The insights gained from this study not only enhance the understanding of the Mishrif Formation but also contribute to the development of more efficient extraction techniques and improved reservoir management strategies. By optimizing recovery methods based on precise petrophysical and lithological data, the study supports the sustainable and economically viable exploitation of hydrocarbon resources in the ROF and similar reservoirs worldwide. These findings are significant in the broader context of petroleum engineering and reservoir management, as they provide a foundation for improved recovery techniques and sustainable resource management.
In recent years the interest in fractured reservoirs has grown. The awareness has increased analysis of the role played by fractures in petroleum reservoir production and recovery. Since most Iraqi reservoirs are fractured carbonate rocks. Much effort was devoted to well modeling of fractured reservoirs and the impacts on production. However, turning that modeling into field development decisions goes through reservoir simulation. Therefore accurate modeling is required for more viable economic decision. Iraqi mature field being used as our case study. The key point for developing the mature field is approving the reservoir model that going to be used for future predictions. This can
In this work, measurements of activity concentration of naturally occurring radioactive materials (NORM) isotopes and their related hazard indices for several materials such as crude oil, sludge and water in Ahdeb oil fields in Waste governorate using high pure germanium coaxial detection technique. The average values for crude oil samples were174.72Bq/l, 43.46Bq/l, 355.07Bq/l, 264.21Bq/l, 122.52nGy/h, 0.7138, 1.1861, 0.601 mSv/y, 0.1503mSv/y and 1.8361 for Ra-226, Ac-228, K-40, Ra eq, D, H-external and H-internal respectively. According to the results; the ratio between 238U to 232Th was 4, which represents the natural ratio in the crust earth; therefore, one can be strongly suggested that the geo-stricture of the
... Show MoreNasiriya field is located about 38 Km to the north – west of Nasiriya city. Yammama, a giant lower cretaceous reservoir in Nasiriya field which is lithologically formed from limestone. Yammama mainly was divided into three main reservoir units YA, YB1, YB2 and YB3 and it is separated by impermeable layers of variable thickness. An accurate petro physical evolution of the reservoir is of great importance perform an excellent geological model so that four petro physical properties which are shale volume, porosity, water saturation and permeability was re-evaluated. The volume of shale was calculated using the density and neutron logs (VSH-DN) rather than using gamma ray log because of presence a uranium content in the formation that make
... Show MoreThe possibility of using the magnetic field technique in prevention of forming scales in heat exchangers pipes using
hard water in heat transfer processes, also the studying the effective and controllable parameters on the mechanism of
scale formation.
The new designed heat exchanger experimental system was used after carrying out the basic process designs of the
system. This system was used to study the effect of the temperature (40-90 °C) and water flow rate (0.6-1.2 L/min) on
the total hardness with time as a function of precipitation of hardness salts from water and scale formation.
Different magnetic field designs in the heat exchanger experimental system were used to study the effect of magnetic
field design a
Reservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and
... Show MoreIraq's oil industry has been passed in different periods , began with domination of Western companies to invest in Iraqi oil at twenties of the last century , through the process of nationalization of the shares of those companies , beginning of the seventies , and ending with the new policies adopted by the government recently, which was contracting with international companies to develop the oil industry , because of what the outcome of the oil industry from a decline in artistic and physical ability as a result to the conditions of war and embargo imposed on Iraq before 2003.
The Iraqi government has introduced licensing of a contract to
... Show MoreFormation evaluation is a critical process in the petroleum industry that involves assessing the petrophysical properties and hydrocarbon potential of subsurface rock formations. This study focuses on evaluating the Mauddad Formation in the Bai Hassan oil field by analyzing data obtained from well logs and core samples. Four wells were specifically chosen for this study (BH-102, BH-16, BH-86, and BH-93). The main objectives of this study were to identify the lithology of the Mauddud Formation and estimate key petrophysical properties such as shale volume, porosity, water saturation, and permeability. The Mauddud Formation primarily consists of limestone and dolomite, with some anhydrites present. It is classified as a clean for
... Show MoreAn aggregate of 30 samples (water, sediments, and plants) was collected from Al-Chibayish Marsh, located in Dhi-Qar Governorate southern of Iraq to investigate the bioaccumulation and biomagnification in marsh plants (flora) and to assess the marsh plants pollution condition. The study was conducted by testing the macro elements, microelements, heavy metals, and organic compositions in water, sediments, and plants. Plant analyses revealed that the Salvinia natans plant species had the highest concentrations of macroelements Mg, Ca, Na, P, and N compared with other marsh plants and sediments. As a result, the cation binds itself to be more than one charged cationic site and this behaviour was observed in Salvinia natans sp. which has the
... Show More