Chemotherapy is one of the most efficient methods for treating cancer patients. Chemotherapy aims to eliminate cancer cells as thoroughly as possible. Delivering medications to patients’ bodies through various methods, either oral or intravenous is part of the chemotherapy process. Different cell-kill hypotheses take into account the interactions of the expansion of the tumor volume, external drugs, and the rate of their eradication. For the control of drug usage and tumor volume, a model based smooth super-twisting control (MBSSTC) is proposed in this paper. Firstly, three nonlinear cell-kill mathematical models are considered in this work, including the log-kill, Norton-Simon, and hypotheses subject to parametric uncertainties and exogenous perturbations. In accordance with clinical recommendations, the tumor volume follows a predefined trajectory after chemotherapy. Secondly, the MBSSTC is applied for the three cell-kill models to attain accurate trajectory tracking even in the presence of uncertainties and disturbances. Compared to conventional super-twisting control (STC), the non-smooth term is introduced in the proposed control to enhance the anti-disturbance capability. Finally, simulation comparisons are performed across the proposed MBSSTC, conventional STC, and proportional–integral (PI) control methods to show the effectiveness and merits of our designed control method.
Abstract
This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m
... Show MoreKE Sharquie, JR Al-Rawi, AA Noaimi, RA Al-Khammasi, Iraqi Journal of Community Medicine, 2018
The neutron, proton, and matter densities of the ground state of the proton-rich 23Al and 27P exotic nuclei were analyzed using the binary cluster model (BCM). Two density parameterizations were used in BCM calculations namely; Gaussian (GS) and harmonic oscillator (HO) parameterizations. According to the calculated results, it found that the BCM gives a good description of the nuclear structure for above proton-rich exotic nuclei. The elastic form factors of the unstable 23Al and 27P exotic nuclei and those of their stable isotopes 27Al and 31P are studied by the plane-wave Born approximation. The main difference between the elastic form factors of unstable nuclei and the
... Show MoreThe research aims to show the relationship between the use of automated accounting systems technology and its impact on enhancing the efficiency and effectiveness of the internal control system in a sample of Bahraini universities in light of the rapid changes in the electronic business environment. Automated accounting and its impact on enhancing the efficiency and effectiveness of the internal control system, and it is concluded through the analytical study of the research sample that there is a percenta
... Show MoreBanks face many of the various risks: which are of dangerous phenomena that cause the state achieved a waste of money and a threat to future development plans to be applied to reach the goals set by: prompting banks and departments to find appropriate solutions and fast: and it was within these solutions rely on Banking risk management and effective role in defining and identifying: measuring and monitoring risk and trying to control and take risks is expected to occur in order to encircle and make it in within acceptable limits: and try to avoid them in the future to reduce the losses that are likely to be exposed to the bank: and it began to emerge and dominate a lot of legislation that seeks to structure the year risk management and t
... Show MoreBackground: Dyslipidemia is defined as an abnormally high level of various lipids in the blood. It is considered a major risk for atherosclerosis and coronary artery disease. Genetic susceptibility can have a significant influence on the development and progression of dyslipidemia. ApoB-100 R3500Q mutation and ApoE variants are among those genetic risks for dyslipidemia. This study aims to assess the possible contribution of ApoB and ApoE variants on lipid profile among a group of early-onset ischemic heart disease (IHD) patients in comparison to a group of controls. Methods: Forty patients with dyslipidemia and early-onset IHD without chronic conditions likely to cause derangement of lipid levels were recruited to this case-control study
... Show Moreتم استخدام خرائط ضبط الجودة الإحصائية لتقييم جودة الخدمة التعليمية في جامعة الباحة، ويهدف هذا البحث إلى استخدام خرائط ضبط الجودة الإحصائية لقياس مستوى الجودة وفجوة الجودة بين توقعات الطلبة وإدراكاتهم لمستوى الخدمة الذي تقدمه جامعة الباحة. حيث تم اختيار عينة من 200 طالب وطالبة عشوائيا باستخدام العشوائية العنقودية من 4 كليات خلال الفترة 01 – 30/2015م، وجمعت البيانات من خلال استبيان جودة الخدمة الذي يقيس ت
... Show MoreTungsten inert gas arc welding–based shaped metal deposition is a novel additive manufacturing technology which can be used for fabricating solid dense parts by melting a cold wire on a substrate in a layer-by-layer manner via continuous DC arc heat. The shaped metal deposition method would be an alternative way to traditional manufacturing methods, especially for complex featured and large-scale solid parts manufacturing, and it is particularly used for aerospace structural components, manufacturing, and repairing of die/molds and middle-sized dense parts. This article presents the designing, constructing, and controlling of an additive manufacturing system using tungsten inert gas plus wire–based shaped metal deposition metho
... Show MoreOne of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show More