Orthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parallel processing capabilities of modern central processing units (CPUs), namely the availability of multiple cores and multithreading. The proposed multi-threaded implementations for computing DKraP coefficients divide the computations into multiple independent tasks, which are executed concurrently by different threads distributed among the independent cores. This multi-threaded approach has been evaluated across a range of DKraP sizes and various values of polynomial parameters. The results show that the proposed method achieves a significant reduction in computation time. In addition, the proposed method has the added benefit of applying to larger polynomial sizes and a wider range of Krawtchouk polynomial parameters. Furthermore, an accurate and appropriate selection scheme of the recurrence algorithm is introduced. The proposed approach introduced in this paper makes the DKraP coefficient computation an attractive solution for a variety of applications.
Arabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show MoreThe fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreThe present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.
Convergence prop erties of Jackson polynomials have been considered by Zugmund
[1,ch.X] in (1959) and J.Szbados [2], (p =ï‚¥) while in (1983) V.A.Popov and J.Szabados [3]
(1 ï‚£p ï‚£ ï‚¥) have proved a direct inequality for Jackson polynomials in L
p-sp ace of 2ï°-periodic bounded Riemann integrable functions (f R) in terms of some modulus of
continuity .
In 1991 S.K.Jassim proved direct and inverse inequality for Jackson polynomials in
locally global norms (L
ï¤,p) of 2ï°-p eriodic bounded measurable functions (f Lï‚¥) in terms of
suitable Peetre K-functional [4].
Now the aim of our paper is to proved direct and inverse inequalities for Jackson
polynomials
The main aim of this paper is to apply a new technique suggested by Temimi and Ansari namely (TAM) for solving higher order Integro-Differential Equations. These equations are commonly hard to handle analytically so it is request numerical methods to get an efficient approximate solution. Series solutions of the problem under consideration are presented by means of the Iterative Method (IM). The numerical results show that the method is effective, accurate and easy to implement rapidly convergent series to the exact solution with minimum amount of computation. The MATLAB is used as a software for the calculations.
The research tackled to solve Sudoku grid problem 9 ×9 , one of artificial intelligence problems. This problem has many of solutions in search space to generate Sudoku grid by using magic square of odd order as 3. This research concludes solution by proposed heuristic algorithm from magic square of odd order as 3 and no given numbers (from 1 to 9) in each cell of nine Sudoku grid cells in starting of problem solution, this is not similar the solution in old classic methods to generate all sub grids in Sudoku grid. The experimental results in this paper show the easily implementation to solve the problem to manage without manual method, additional to position of numbers (1, 2,..9) in center of each sub grid in Sudoku grid
... Show MoreIn this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami
... Show MoreNowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of
... Show MoreBackground:Â Various fluids in the oral environment can affect the surface roughness of resin composites. This in vitro study was conducted to determine the influence of the mouth rinses on surface roughness of two methacrylate-based resin (nanofilled and packable composite) and siloraine-based resin composites.
Materials and methods: Disc-shaped specimens (12 mm in diameter and 2mm in height) were prepared from three types of composi
... Show MoreThe aim of this paper is to prove a theorem on the Riesz means of expansions with respect to Riesz bases, which extends the previous results of [1] and [2] on the Schrödinger operator and the ordinary differential operator of 4-th order to the operator of order 2m by using the eigen functions of the ordinary differential operator. Some Symbols that used in the paper: the uniform norm. <,> the inner product in L2. G the set of all boundary elements of G. ˆ u the dual function of u.