The new Azo ligand and its metal complexes have been prepared and characterized The reaction of 4-nitroaniline and 2-hydroxy-1-naphthaldehyde in a 1: 1 mole ratio resulted in the synthesis of ((E)-2-hydroxy-3-((4-nitrophenyl) diazenyl)-1-naphthaldehyde)(HL). The separation of monomeric complexes was accomplished by reacting ((E)-2-hydroxy-3-((4-nitrophenyl) diazenyl)-1-naphthaldehyde)(HL) with Cr, Mn II, Co II, Ni II, and Cu II metal ions in a mole ratio of 2: 1 (L: M). Elemental microanalysis, magnetic susceptibility, conductance, FT-IR, electronic spectra, and 1 HNMR, 13 C-NMR, and mass spectra were among the analytical and spectroscopic techniques used to describe the products. Based on the data collected during the characterization process, six coordinates were determined. The ligand and its complexes were tested against certain bacteria and fungi. The findings acquired suggested that the metal complexes are more active against a variety of organisms have been studied as compared to the free ligand.
Starting from bis (4,4'-diamino phenoxy) ethan(1), a variety of phenolicschiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis, some derivatives evaluated by thermal analysis (TGA).
The reaction of [Benzoyl hydrazine] with [Diphenyl mono oxime] and Glacial acetic acid was carried out in methanol gave a new tridentate ligand [Benzoic acid (2- hydroxyimino- 1, 2-diphyneylethylidene) - hydrazide]. This ligand was reacted with some metal ions (Fe(II), Co(II), Ni(II), and Cu(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(L)Cl2.H2O], where M= Fe(11), Co(11), Ni(11) and Cu(11) . All compounds were characterized by spectroscopic methods (I.R, UV-Vis), elemental microanalysis (C.H.N), atomic absorption, magnetic susceptibility, and conductivity measurements. From the obtained data the proposed molecular structures were suggested for the complexes of Fe (II), Co (II)
... Show MoreThe reaction of [Benzoyl hydrazine] with [Diphenyl mono oxime] and Glacial acetic acid was carried out in methanol gave a new tridentate ligand [Benzoic acid (2-hydroxyimino- 1, 2-diphyneylethylidene) - hydrazide]. This ligand was reacted with some metal ions (Fe(II), Co(II), Ni(II), and Cu(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(L)Cl2.H2O], where M= Fe(11), Co(11), Ni(11) and Cu(11). All compounds were characterized by spectroscopic methods (I.R, UV-Vis), elemental microanalysis (C.H.N), atomic absorption, magnetic susceptibility, and conductivity measurements. From the obtained data the proposed molecular structures were suggested for the complexes of Fe
... Show MoreKE Sharquie, AA Noaimi, E Abdulqader, WK Al-Janabi, J Dermatol Venereol, 2020 - Cited by 6
Isatin is a heterocyclic molecule that belongs to one of the most important classes of organic compounds known as indolines. Isatin, isatin analogs, and their Schiff bases have recently attracted a lot of attention in medicinal chemistry. Isatin, itself, shows various biological activities such as antiviral, anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, and anticonvulsant. Bis- Schiff bases containing isatin moiety have been known to possess a wide spectrum of pharmacological activities. This review offers up-to-date information on the most active isatin bis-Schiff bases, which would include anticancer, antimicrobial, antiviral, anticonvulsant, anti-inflammatory, and analgesic activities. These observations c
... Show MoreIsatin is a heterocyclic molecule that belongs to one of the most important classes of organic compounds known as indolines. Isatin, isatin analogs, and their Schiff bases have recently attracted a lot of attention in medicinal chemistry. Isatin, itself, shows various biological activities such as antiviral, anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, and anticonvulsant. Bis- Schiff bases containing isatin moiety have been known to possess a wide spectrum of pharmacological activities. This review offers up-to-date information on the most active isatin bis-Schiff bases, which would include anticancer, antimicrobial, antiviral, anticonvulsant, anti-inflammatory, and analgesic activities. These observations c
... Show MoreNumber of new polyester and polyamide are prepared as derivatives from 5,5`-(1,4-phenylene)-bis-(1,3,4-thiadiazole-2-amine) [C1], three series of heterocyclic compounds were synthesized.The first series includes the Schiff base [C2] prepared from the reaction between compound [C1] with p-hydroxy benzaldehyde in presence of acetic acid and absolute ethanol , then these derivatives have reaction with maleic anhydride , phthalic anhydride and sodium azide, respectively to obtain the compounds [C3-5] contaning (oxazepine and tetrazole) rings.The third series of compounds [C1-5] has transformed to their polymers [C6-15] by reaction with adipoyl chloride and glutroyl chloride , respectively. The reaction was followed by T.L.C and ident
... Show MorePhenoxathiin was prepared by the reaction of diphenyl ether with sulfur in the presence of anhydrous aluminum chloride. This work comprised the synthesis of new phenoxathiin derivatives containing heterocyclic moieties. These heterocyclic compounds were synthesized in three groups. The first group was made up of 2-(oxoalken-1-yl) phenoxathiin derivatives (3a-3j) obtained from the reaction of 2-acetylphenoxathiin with different aromatic aldehyde in the presence of sodium hydroxide. The other two groups involved compounds produced from the reaction of (3a-3j) with hydrazine hydrate in acetic acid to get 2-(1-acetyl pyrazolin-3-yl) phenoxathiin derivatives (4a-4j), and phenyl hydrazine in the presence of piperidine to afford 2-(1-phenyl pyrazo
... Show MoreIn this work dithine complexes prepared from dithiol benzil ligand and central ion to the Ni,Pd,Pt, element the ligand and complexes have been investigated using FTIR spectrophotometer and uv-vis-NIR spectral reigns show higher intensity represents the ?-?* transition in the chromopher cycle .These absorption which appear in visible and near IR spectral regions ,According to the complexes of one group ,the spectral shifting due to the change of central ion has been found to be related to atomic number of central ion .This shifting is increased while decreasing the central ion atom number These complexes have been implemented in Nd+2:YAG cavity because each posses resonant absorption band near Nd+2:YAG, Nd+2:Glass emitting at (106
... Show More