The new Azo ligand and its metal complexes have been prepared and characterized The reaction of 4-nitroaniline and 2-hydroxy-1-naphthaldehyde in a 1: 1 mole ratio resulted in the synthesis of ((E)-2-hydroxy-3-((4-nitrophenyl) diazenyl)-1-naphthaldehyde)(HL). The separation of monomeric complexes was accomplished by reacting ((E)-2-hydroxy-3-((4-nitrophenyl) diazenyl)-1-naphthaldehyde)(HL) with Cr, Mn II, Co II, Ni II, and Cu II metal ions in a mole ratio of 2: 1 (L: M). Elemental microanalysis, magnetic susceptibility, conductance, FT-IR, electronic spectra, and 1 HNMR, 13 C-NMR, and mass spectra were among the analytical and spectroscopic techniques used to describe the products. Based on the data collected during the characterization process, six coordinates were determined. The ligand and its complexes were tested against certain bacteria and fungi. The findings acquired suggested that the metal complexes are more active against a variety of organisms have been studied as compared to the free ligand.
A novel metal complexes Cu (II), Co (II), Cd (II), Ru (III) from azo ligand 5-((2-(1H-indol-2-yl)
ethyl) diazinyl)-2-aminophenol were synthesized by simple substitution of tryptamine with 2-aminophenol.
Structures of all the newly synthesized compounds were characterized by FT IR, UV-Vis, Mass spectroscopy
and elemental analysis. In addition measurements of magnetic moments, molar conductance and atomic
absorption. Then study their thermal stability by using TGA and DSC curves. The DCS curve was used to
calculate the thermodynamic parameters ΔH, ΔS and Δ G. Analytical information showed that all complexes
achieve a metal:ligand ratio of [1:1]. In all complex examinations, the Ligand performs as a tri
الوصف A simple chemistry method approach was used to synthesise new ligand derivate from L-ascorbic acid and its complexes. All of them were water-soluble and are used quite extensively in the medical and pharmaceutical fields. This study synthesised the new ligand derivative from L-ascorbic acid-base using the following steps: A 5, 6-O-isopropylidene-L-ascorbic acid was prepared by reacting dry acetone with L-ascorbic acid followed by reacting it with trichloroacetic acid to yield [chloro (carboxylic) methylidene]-5, 6-O-isopropylidene-L-ascorbic acid in the second stage. In the third stage, the derivative was reacted with (methyl (6-methyl-2-pyridylmethyl) amine to create a new ligand (ONMILA). This novel ligand was identified using
... Show MoreMany complexes of 3,5-dimethyl-1H-pyrazol-1-yl phenyl methanone with Cr(III), Co(II), Ni(II), Cu(II) and Cd(II) were synthesized and characterized by FT-IR, UV/visible spectra, elemental analysis, room temperature magnetic susceptibility and molar conductivity. Cd(II) complex was expected to have tetrahedral structure while all the other complexes were expected to have an octahedral structure.
الوصف Mixed ligand complexes of Cu (II), Co (II) and Zn (II) with 2-((4-(1-(4-chlorophenylimino) ethyl) phenylimino) methyl) phenol (L) and histidine (His) have been prepared and diagnosed by ¹H and13 C NMR, FT-IR and electronic spectral data, thermal gravimetric, molar conductance and metal analysis measurements. The ligand (L) shows a bidentate nature and the coordination occurs through N and O atoms of imine group and phenol group respectively whereas (His) behave as tridentate ligand, coordinating through the-NH2 group and carboxylate oxygen group and N atoms of imidazole ring. The analytical studies for three complexes have shown octahedral structure. The anticancer activity was screened against human cancer cell such Follicular
... Show MoreThe purpose of my thesis is to prepare four new ligands (L1-L4) that have been used to prepare a series of metal complexes by reacting them with metal ions: M=(Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) Where succinyl chloride was used as a raw material for the preparation of bi-dented ligands (L1-L4) by reacting it with potassium thiocyanate as a first step and then reacting with (2-aminobenzothiazole, Benzylamine, 4-aminoantipyrine, Sulfamethoxazole) respectively as a second step with the use of dry acetone as a solvent, the chemical formula of the four ligands prepared in succession: N1,N4-bis(benzo[d]thiazol-2-ylcarbamothioyl)succinamide (L1) N1,N4-bis(benzylcarbamothioyl)succinami
... Show MoreThe reaction of starting materials (L-asCl2):bis[O,O-2,3;O,O-5,6-(chloro(carboxylic) methylidene)]- -L-ascorbic acid] with glycine gives new product bis[O,O-2,3,O,O-5,6-(N,O-di carboxylic methylidene N-glycine)-L-ascorbic acid] (L-as-gly) which is isolated and characterized by, Mass spectrum UV-visible and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the (L-as-gly) with M+2; Co(II) Ni(II) Cu(II) and Zn(II) has been characterized by FT- IR , Uv-Visible , electrical conductivity, magnetic susceptibility methods and atomic absorption and molar ratio . The analysis showed that the ligand coordinate with metal ions through mono dentate carboxylic resulting in six-coordinated with Co(II) Ni(II) Cu(II) ions while with
... Show MoreSome metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreOne of the most difficult tasks in modern medical societies is the process of identifying a cure for many infectious diseases caused by drug-resistant microbes. Therefore, it has become necessary to discover new compounds that work in this regard. The currently prepared Schiff base, derived from thiazole, has a biological activity against bacteria and biofilms and its activity increases when it is associated with copper, zinc and platinum ions and forms metal complexes. This study highlights the synthesis and evaluation of novel biological compounds as inhibitors of bacterial growth and biofilms. A three newly complexes are resulting from the reaction of a new Schiff base ligand (LC) with metal ions (Zn, Cu, Pt). The new ligand (LC)
... Show More