In the present study, 1-ethyl -3-methyllimidazolium acetate ionic liquid is introduced for extractive desulfurization of Iraqi kerosene (1622ppm) and compared with 1-ethyl -3- methyllimidazolium tetrafloroborate. The effect of ionic liquid/ fuel ratio (1/9, 1/4, 1/2), temperature (25, 30,40oC), stirring speed (300,450rpm) and time (10, 30, 90, 180, 360 min) were studied. Sulfur compound analysis was performed using X-Ray fluorescence. The ionic liquid with acetate anion (OAc) showed better performance than tetrafloborate (BF4). The maximum extraction efficiency was 32% achieved at 1/2 IL/Fuel and 40oC after 90min. The oxidation step using hydrogen peroxide (8ml/200ml), catalyzed by acetic acid (2ml) and followed by ionic liquid extraction had a pronounced effect on sulfur compound removal reaching 57%.
The importance of media coverage in the war remains dependent on many indicators for its success, the most important is to have qualified reporters who carry the war news professionally. The idea of this research is to determine the role played by war correspondents working on Iraqi satellite channels during the war against ISIS.
The researcher has chosen ( 40 ) reporters those who was able to contact them and prepared a questionnaire for them to study their situations. Also, he chose an intentional sample from Baghdad audience on condition they should be informed by the performance of the reporters in the satellite channels applying the hypotheses of the theory of depending upon media.
The most important results reached by the re
The study was conducted over the period of Oct 2018 to Apr 2019 and is aimed for the detection and estimation of four hazardous Volatile Organic Compounds VOC (benzene, toluene, ethylbenzene, and xylene) so-called (BTEX) in samples collected from the produced water in the Al-Ahdab oil field in Iraq also to track their availability in the important natural water sources around the field. These compounds pose a risk to human health as well as environment. To avoid the laborious and tiresome conventional extraction methods, water samples were collected and concentrated using solid-phase extraction technique (SPE) which is a robust and cost-effective method of sample extraction with minimal exposure and handling of solvents and then to be analy
... Show MoreBackground: Periodontal diseases (PD) are common chronic inflammatory diseases caused by pathogenic microorganisms colonizing the gingival area and inducing local and systemic elevations of pro-inflammatory cytokines resulting in tissue destruction by a destructive inflammatory process. Stress was considered as one of the important risk factors that cause many inflammatory diseases including PD. The purpose of this study wasto determines and compares clinical periodontal parameters (PLI, GI and BOP), stress level and salivary IL-1? level among dental students before, during and after mid-year exam, also to find the correlation among stress, IL-1? and clinical periodontal parameters. Materials and methods: The sample was consisted of 24 dent
... Show MoreAdsorption of lead ions from wastewater by native agricultural waste, precisely tea waste. After the activation and carbonization of tea waste, there was a substantial improvement in surface area and other physical characteristics which include density, bulk density, and porosity. FTIR analysis indicates that the functional groups in tea waste adsorbent are aromatic and carboxylic. It can be concluded that the tea waste could be a good sorbent for the removal of Lead ions from wastewater. Different dosages of the adsorbents were used in the batch studies. A random series of experiments indicated a removal degree efficiency of lead reaching (95 %) at 5 ppm optimum concentration, with adsorbents R2 =97.75% for tea. Three mo
... Show MoreThis research focuses on the removal and adsorption of Fe (III) ion using a low cost commercial polyacrylic acid hydrogel beads as adsorbent. The effects of time, initial concentration and pH on the metal ion adsorption capacity were investigated. The regeneration of the hydrogel bead and recovery of the metal ion adsorbed were study. The adsorption isotherm models were applied on experimental data and it is shown that the Langmuir model was the best one for Fe (III) ion removal. The maximum capacity was calculated. First-order and second- order kinetic models were used and it is shown that the experimental data was in reliable compliance with the first- order model with R2 value of (0.9935, 0.9011, 0.9695, 0.9912) for all concentrations
... Show MoreIn this study, the use of non-thermal plasma theory to remove toxic gases emitted from a vehicle was experimentally investigated. A non-thermal plasma reactor was constructed in the form of a cylindrical tube made of Pyrex glass. Two stainless steel rods were placed inside the tube to generate electric discharge and plasma condition, by connecting with a high voltage power supply (up to 40 kV). The reactor was used to remove the contaminants of a 1.25-liter 4-cylinder engine at ambient conditions. Several tests have been carried out for a ranging speed from 750 to 4,500 rpm of the engine and varying voltages from 0 to 32 kV. The gases entering the reactor were examined by a gas analyzer and the gases concentration ratio
... Show MoreIn the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
In this study, a packed bed was used to remove pathogenic bacteria from synthetic contaminated water. Two types of packing material substrates, sand and zeolite, were used. These substrates were coated with silver nanoparticles (AgNPs), which were prepared by decomposition of Ag ions from AgNO3 solution. The prepared coated packings were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The packed column consisted of a PVC cylinder of 2 cm diameter and 20 cm in length. The column was packed with silver nanoparticlecoated substrates (sand or zeolite) at a depth of 10 cm. Four types of bacteria were studied: Escherichia coli, Shigella dysenteriae, Pseudomonas aerugi
... Show More