Preferred Language
Articles
/
9hjNRZQBVTCNdQwCUQN5
A new algorithm of modified binary particle swarm optimization based on the Gustafson-Kessel for credit risk assessment
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Mar 01 2016
Journal Name
International Journal Of Engineering Research And Advanced Technology (ijerat)
Speeding Up Back-Propagation Learning (SUBPL) Algorithm: A New Modified Back_Propagation Algorithm
...Show More Authors

The convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.

View Publication
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Optimum Median Filter Based on Crow Optimization Algorithm
...Show More Authors

          A novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the resul

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Dec 01 2014
Journal Name
2014 Ieee Symposium On Differential Evolution (sde)
Comparative analysis of a modified differential evolution algorithm based on bacterial mutation scheme
...Show More Authors

A new modified differential evolution algorithm DE-BEA, is proposed to improve the reliability of the standard DE/current-to-rand/1/bin by implementing a new mutation scheme inspired by the bacterial evolutionary algorithm (BEA). The crossover and the selection schemes of the DE method are also modified to fit the new DE-BEA mechanism. The new scheme diversifies the population by applying to all the individuals a segment based scheme that generates multiple copies (clones) from each individual one-by-one and applies the BEA segment-wise mechanism. These new steps are embedded in the DE/current-to-rand/bin scheme. The performance of the new algorithm has been compared with several DE variants over eighteen benchmark functions including sever

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
2018 Third Scientific Conference Of Electrical Engineering (scee)
An Intelligent Cognitive System Design for Mobile Robot based on Optimization Algorithm
...Show More Authors

View Publication
Scopus (7)
Scopus Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach
...Show More Authors

The university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed a

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Dec 31 2022
Journal Name
International Journal Of Intelligent Engineering And Systems
Using Three-Dimensional Logistic Equations and Glowworm Swarm Optimization Algorithm to Generate S-Box
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Path Planning of an autonomous Mobile Robot using Swarm Based Optimization Techniques
...Show More Authors

This paper presents a meta-heuristic swarm based optimization technique for solving robot path planning. The natural activities of actual ants inspire which named Ant Colony Optimization. (ACO) has been proposed in this work to find the shortest and safest path for a mobile robot in different static environments with different complexities. A nonzero size for the mobile robot has been considered in the project by taking a tolerance around the obstacle to account for the actual size of the mobile robot. A new concept was added to standard Ant Colony Optimization (ACO) for further modifications. Simulations results, which carried out using MATLAB 2015(a) environment, prove that the suggested algorithm outperforms the standard version of AC

... Show More
View Publication Preview PDF
Crossref (22)
Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of Nonlinear PID Neural Controller for the Speed Control of a Permanent Magnet DC Motor Model based on Optimization Algorithm
...Show More Authors

In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 01 2019
Journal Name
International Journal Of Swarm Intelligence Research
A New Strategy Based on GSABAT to Solve Single Objective Optimization Problem
...Show More Authors

This article proposes a new strategy based on a hybrid method that combines the gravitational search algorithm (GSA) with the bat algorithm (BAT) to solve a single-objective optimization problem. It first runs GSA, followed by BAT as the second step. The proposed approach relies on a parameter between 0 and 1 to address the problem of falling into local research because the lack of a local search mechanism increases intensity search, whereas diversity remains high and easily falls into the local optimum. The improvement is equivalent to the speed of the original BAT. Access speed is increased for the best solution. All solutions in the population are updated before the end of the operation of the proposed algorithm. The diversification f

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Modified BFGS Update (H-Version) Based on the Determinant Property of Inverse of Hessian Matrix for Unconstrained Optimization
...Show More Authors

The study presents the modification of the Broyden-Flecher-Goldfarb-Shanno (BFGS) update (H-Version) based on the determinant property of inverse of Hessian matrix (second derivative of the objective function), via updating of the vector s ( the difference between the next solution and the current solution), such that the determinant of the next inverse of Hessian matrix is equal to the determinant of the current inverse of Hessian matrix at every iteration. Moreover, the sequence of inverse of Hessian matrix generated by the method would never  approach a near-singular matrix, such that the program would never break before the minimum value of the objective function is obtained. Moreover, the new modification of BFGS update (H-vers

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (10)
Scopus Clarivate Crossref