Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreGlobally, the COVID-19 pandemic’s development has presented significant societal and economic challenges. The carriers of COVID-19 transmission have also been identified as asymptomatic infected people. Yet, most epidemic models do not consider their impact when accounting for the disease’s indirect transmission. This study suggested and investigated a mathematical model replicating the spread of coronavirus disease among asymptomatic infected people. A study was conducted on every aspect of the system’s solution. The equilibrium points and the basic reproduction number were computed. The endemic equilibrium point and the disease-free equilibrium point had both undergone local stability analyses. A geometric technique was used
... Show MoreThe general objective of the research is to better understand changes in land cover and their impact on climatic factors by measuring changes in land cover for the Baghdad city for the period 1999-2021 and evaluating changes in land cover and measuring changes in climatic factors (relative humidity and evaporation). This study from 1999 to 2021 and in two different seasons: the April of the growing season and August the dry season. When using the supervised classification method to determine the differences, the results showed remarkable changes, the study showed the spatial variations in LC from 1999 to 2021 as follows: increase in the vegetation and water bodies during April and decrease this in August while the soil and built up decreas
... Show MoreThe subject of an valuation of quality of construction projects is one of the topics which it becomes necessary of the absence of the quantity standards in measuring the control works and the quality valuation standards in constructional projects. In the time being it depends on the experience of the workers which leads to an apparent differences in the valuation.
The idea of this research came to put the standards to evaluate the quality of the projects in a special system depending on quantity scale nor quality specifying in order to prepare an expert system “ Crystal “ to apply this special system to able the engineers to valuate the quality of their projects easily and in more accurate ways.
Abstract
In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than natural based material composites and the specimen (Epoxy+6%glass fiber+6%RHA) has higher resistance erosion than composites reinforced with carrot powder and sawdust at 30cm , angle 60
... Show MoreHealthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show Moremajor goal of the next-generation wireless communication systems is the development of a reliable high-speed wireless communication system that supports high user mobility. They must focus on increasing the link throughput and the network capacity. In this paper a novel, spectral efficient system is proposed for generating and transmitting twodimensional (2-D) orthogonal frequency division multiplexing (OFDM) symbols through 2- D inter-symbol interference (ISI) channel. Instead of conventional data mapping techniques, discrete finite Radon transform (FRAT) is used as a data mapping technique due to the increased orthogonality offered. As a result, the proposed structure gives a significant improvement in bit error rate (BER) performance. Th
... Show MoreIn modern technology, the ownership of electronic data is the key to securing their privacy and identity from any trace or interference. Therefore, a new identity management system called Digital Identity Management, implemented throughout recent years, acts as a holder of the identity data to maintain the holder’s privacy and prevent identity theft. Therefore, an overwhelming number of users have two major problems, users who own data and third-party applications will handle it, and users who have no ownership of their data. Maintaining these identities will be a challenge these days. This paper proposes a system that solves the problem using blockchain technology for Digital Identity Management systems. Blockchain is a powerful techniqu
... Show MoreNowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show More