A simple straightforward mathematical method has been developed to cluster grid nodes on a boundary segment of an arbitrary geometry that can be fitted by a relevant polynomial. The method of solution is accomplished in two steps. At the first step, the length of the boundary segment is evaluated by using the mean value theorem, then grids are clustered as desired, using relevant linear clustering functions. At the second step, as the coordinates cell nodes have been computed and the incremental distance between each two nodes has been evaluated, the original coordinate of each node is then computed utilizing the same fitted polynomial with the mean value theorem but reversibly.
The method is utilized to predict
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreThe objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme
... Show MoreReservoir fluids properties are very important in reservoir engineering computations such as material balance calculations, well testing analyses, reserve estimates, and numerical reservoir simulations. Isothermal oil compressibility is required in fluid flow problems, extension of fluid properties from values at the bubble point pressure to higher pressures of interest and in material balance calculations (Ramey, Spivey, and McCain). Isothermal oil compressibility is a measure of the fractional change in volume as pressure is changed at constant temperature (McCain). The most accurate method for determining the Isothermal oil compressibility is a laboratory PVT analysis; however, the evaluation of exploratory wells often require an esti
... Show MoreToday’s academics have a major hurdle in solving combinatorial problems in the actual world. It is nevertheless possible to use optimization techniques to find, design, and solve a genuine optimal solution to a particular problem, despite the limitations of the applied approach. A surge in interest in population-based optimization methodologies has spawned a plethora of new and improved approaches to a wide range of engineering problems. Optimizing test suites is a combinatorial testing challenge that has been demonstrated to be an extremely difficult combinatorial optimization limitation of the research. The authors have proposed an almost infallible method for selecting combinatorial test cases. It uses a hybrid whale–gray wol
... Show MoreBP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.
Spergularia iraqensis sp. nov. is described as a new species from Iraq. This species has been collected from Diyala Province in the central east of Iraq; it is closely related to Spergularia rubra (L.) J. Presl & C. Presl, 1819 and Spergularia bocconei (Scheele) Graebn., 1919.
The distinguishing of the morphological characteristics of the new species alongside the two similar species are discussed with photographs, and an identification key is given for Spergularia iraqensis and other closely related species.
BACKGROUND: Coronavirus current pandemic (COVID-19) is the striking subject worldwide hitting countries in an unexplained non-universal pattern. Bacillus Calmette–Guérin (BCG) vaccine was an adopted recent justification depending on its non-specific immune activation properties. Still the problem of post-vaccine short duration of protection needs to be solved. The same protective mechanism was identified in active or latent tuberculosis (TB). For each single patient of active TB, there are about nine cases of asymptomatic latent TB apparently normal individuals living within the community without restrictions carrying benefits of immune activation and involved in re-infection cycles in an excellent example of repeated immunity tr
... Show MoreAlzheimer’s disease (AD) is an age-related progressive and neurodegenerative disorder, which is characterized by loss of memory and cognitive decline. It is the main cause of disability among older people. The rapid increase in the number of people living with AD and other forms of dementia due to the aging population represents a major challenge to health and social care systems worldwide. Degeneration of brain cells due to AD starts many years before the clinical manifestations become clear. Early diagnosis of AD will contribute to the development of effective treatments that could slow, stop, or prevent significant cognitive decline. Consequently, early diagnosis of AD may also be valuable in detecting patients with dementia who have n
... Show More