Quantitative real-time Polymerase Chain Reaction (RT-qPCR) has become a valuable molecular technique in biomedical research. The selection of suitable endogenous reference genes is necessary for normalization of target gene expression in RT-qPCR experiments. The aim of this study was to determine the suitability of each 18S rRNA and ACTB as internal control genes for normalization of RT-qPCR data in some human cell lines transfected with small interfering RNA (siRNA). Four cancer cell lines including MCF-7, T47D, MDA-MB-231 and Hela cells along with HEK293 representing an embryonic cell line were depleted of E2F6 using siRNA specific for E2F6 compared to negative control cells, which were transfected with siRNA not specific for any gene. Using RT-qPCR, Ct (threshold cycle) values of 18S and ACTB were determined in transfected cells and compared with control cells. In the selection of the above cell lines, 18S was identified as the most stably expressed reference gene than ACTB in gene knockdown experiments.
In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreA two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was
... Show MoreLongitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.
In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.
The longitudinal balanced data profile was compiled into subgroup
... Show MoreThe advancements in Information and Communication Technology (ICT), within the previous decades, has significantly changed people’s transmit or store their information over the Internet or networks. So, one of the main challenges is to keep these information safe against attacks. Many researchers and institutions realized the importance and benefits of cryptography in achieving the efficiency and effectiveness of various aspects of secure communication.This work adopts a novel technique for secure data cryptosystem based on chaos theory. The proposed algorithm generate 2-Dimensional key matrix having the same dimensions of the original image that includes random numbers obtained from the 1-Dimensional logistic chaotic map for given con
... Show MoreThe present study aimed to shed light on the urine HSP70 concentration of patients with urinary bladder carcinoma UBC and control subjects as new urinary biomarker. The second aim was to associate this protein concentration with UBC stage and grade in patients with UBC. A direct ELISA was used to quantify urine HSP concentrations in 58 patients with urinary bladder carcinoma UBC with different grades (G) and stages (T) all malignant of them was transitional cell carcinoma (TCC) type , 15 from patients with urinary Bladder disorders other than cancer UBD and 15 healthy subjects(control) . Urine concentrations of HSP70 were elevated in patients with UBC compared to those without UBC (healthy and UBD, P< 0.5). There was a high signifi
... Show MoreAbstract:
Thanks for people's God who brought the great book, prays and peace for
his prophet "Mohammad" the master of missioners to all people.
Allah created human being in it's best way and give him a soul thus ,
he will be a human with faith that has movement and life and the centre of his
soul is the sense which differentiate human from other animals. This
sensation generated from different senses that made the soul.
God had given him a protected heart, talkative tounge and clear seeing
to understand with consideration, so he will prevent himself of falling in wrong
by thinking and situation that he will pass by.
The significance and probability of sensation had talken our attention in
Qur'an . Hence
Breast cancer (BC) is the most commonly diagnosed cancer in women. The metabolism of iron is closely regulated by hepcidin which exerts its action by interacting with a ferroportin.
The aim of the present study was to assess the alterations in the levels of some serum biomarkers that have a role in iron homeostasis (hepcidin and ferroportin) in addition to hematological parameters (hemoglobin, leukocyte and platelets count) in different stages of BC.
This study included 66 women with BC. The patients were categorized as follows : group 1 includes :22 patients with stage I disease ,group 2 includes: 22 patients with stage II disease ,and group 3 include: 22 patients with stage III disease .Group 4 includes :22 appare
... Show More