This study aimed to investigate the incorporation of recycled waste compact discs (WCDs) powder in concrete mixes to replace the fine aggregate by 5%, 10%, 15% and 20%. Compared to the reference concrete mix, results revealed that using WCDs powder in concrete mixes improved the workability and the dry density. The results demonstrated that the compressive, flexural, and split tensile strengths values for the WCDs-modified concrete mixes showed tendency to increase above the reference mix. However, at 28 days curing age, the strengths values for WCDs-modified concrete mixes were comparable to those for the reference mix. The leaching test revealed that none of the WCDs constituents was detected in the leachant after 180 days. The findings of this study indicated a sustainable alternative for diminution the effects on the environment posed by waste CDs. Significant agreement between experimental results and those predicted by the artificial neural networks (ANN) modeling was observed.
This research is devoted to investigate relationship between both Ultrasonic Pulse Velocity and Rebound Number (Hammer Test) with cube compressive strength and also to study the effect of steel reinforcement on these relationships.
A study was carried out on 32 scale model reinforced concrete elements. Non destructive testing campaign (mainly ultrasonic and rebound hammer tests) made on the same elements. About 72 concrete cubes (15 X 15 X15) were taken from the concrete mixes to check the compressive strength.. Data analyzed.Include the possible correlations between non destructive testing (NDT) and compressive strength (DT) Statistical approach is used for this purpose. A new relationships obtained from correlations results is give
In this research a theoretical study has been carried out on the behavior and strength of simply supported composite beams strengthened by steel cover plate taking into consideration partial interaction of shear connectors and nonlinear behavior of the materials and shear connectors. Following the procedure that already has been adopted by Johnson (1975), the basic differential equations of equilibrium and compatibility were reduced to single differential equation in terms of interface slip between concrete slab and steel beam. Furthermore, in order to consider the nonlinear behavior of steel, concrete and shear connectors, the basic equation was rearranged so that all terms related to materials are isol
... Show MoreThe aim of this study is to investigate the behavior of composite castellated beam in which the concrete slab and steel beam connected together with headed studs shear connectors. Four simply supported composite beams with various degree of castellation were tested under two point static loads. One of these beams was built up using standard steel beam, i.e. without web openings, to be a reference beam. The other three beams were fabricated from the same steel I-section with various three castellation ratios, (25, 35, and 45) %. In all beams the concrete slab has the same section and properties. Deflection at mid span of all beams was measured at each 10 kN load increment. The test results show that the castellation process leads to
... Show MoreThis research presents an experimental investigation on the influence of metakaolin replacement percentage upon some properties of different concrete types. Three types of concrete were adopted (self- compacted concrete, high performance concrete and reactive powder concrete) all of high sulphate (SO3) percentage from the fine aggregate weight, 0.75%. Three percentages of metakaolin replacement were selected to be studied (5, 7 and 10) %. Three types of concrete properties (compressive, flexural and splitting tensile strength) were adopted to achieve better understanding for the influence of adding metakaolin.. The output results indicated that the percentage of metakaolin had a different level of positive effect on the compressive strength
... Show MoreNowadays, the use of recycled waste construction materials instead of aggregates is becoming popular in construction owing to its environmental benefits. This paper presents an experimental and analytical campaign to study the behavior of axially loaded columns constructed from recycled aggregates. The latter was used instead of natural aggregates, and they were collected from the waste of previous concrete constructions. Different concrete mixtures made from varying amounts of recycled aggregates ranged from 0 to 50% of the total coarse aggregate were conducted to achieve 28 MPa. The effect of steel fibers is another investigated variable with volumes ranged from 0 to 2% concerning concrete’s mixture. The experimental
... Show MoreGlobal warming and environmental damage have become major problems. The production of Portland cement releases large quantities of gas, which cause pollution to the atmosphere. This problem can be solved via the use of sustainable materials, such as glass powder. This study investigates the effect of partial replacement of cement with sustainable glass powder at various percentages (0, 15, 20, and 25%) by weight of cement on some mechanical properties (compressive strength, flexural strength, absorption, and dry density) of Reactive Powder Concrete (RPC) containing a percentage of Polypropylene fibers (PRPC) of 1% by weight. Furthermore, steam curing was performed for 5 hours at 90oC after hardening the sample directly. The RPC was
... Show MoreWhen the flange of a reinforced concrete spandrel beam is in tension, current design codes and specifications enable a portion of the bonded flexure tension reinforcement to be distributed over an effective flange width. The flexural behavior of the RC L-shaped spandrel beam when reinforcement is laterally displaced in the tension flange is investigated experimentally and numerically in this work. Numerical analysis utilizing the finite element method is performed on discretized flanged beam models validated using experimentally verified L-shaped beam specimens to achieve study objectives. A parametric study was carried out to evaluate the influence of various factors on the beam’s flexure behavior. Results showed that
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement.
The main conclusion of this study was that all ty
... Show MoreThe objective of this research work is to evaluate the quality of central concrete plant of Al-Rasheed Company by using Six Sigma approach which is a measure of quality that strives for near elimination of defects using the statistical methods to improve outputs that are critical to customers. The fundamental objective of Six Sigma methodology is the implementation of a measurement-based strategy that focuses on process improvement and variation reduction to reach delighting customers, and then suggesting an improvement system to improve the production of concrete in Al-Rasheed State Contracting Construction Company.
A field survey includes two parts (open and close questionnaire) that aimed to get the data and information required f