With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.
Optimizing system performance in dynamic and heterogeneous environments and the efficient management of computational tasks are crucial. This paper therefore looks at task scheduling and resource allocation algorithms in some depth. The work evaluates five algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Firefly Algorithm (FA) and Simulated Annealing (SA) across various workloads achieved by varying the task-to-node ratio. The paper identifies Finish Time and Deadline as two key performance metrics for gauging the efficacy of an algorithm, and a comprehensive investigation of the behaviors of these algorithms across different workloads was carried out. Results from the experiment
... Show MoreBacterial meningitis is a leading cause of illness and death worldwide. It is crucial for clinical and public health care, as well as disease control, to identify the meningitis-causing agent promptly. Between June 2021-February 2022, a total of 100 cerebrospinal fluid (CSF) and blood samples were collected from suspected cases of meningitis admitted to Raparin Paediatric Teaching Hospital, Erbil city-Iraq. Cytochemical, cultural, and biochemical tests were conducted, and confirmed by molecular techniques. Bacterial culture findings were positive in 7% of CSF samples and just one positive among blood samples. The most common pathogens found by cultural characteristics and VITEK 2 Compact System were Staphylococcus sciuri in two
... Show MoreThe usual methods of distance determination in Astronomy parallax and Spectroscopic with Expansion Methods are seldom applicable to Nebulae. In this work determination of the distances to individual Nebulae are calculated and discussed. The distances of Nebulae to the Earth are calculated. The accuracy of the distance is tested by using Aladin sky Atlas, and comparing Nebulae properties were derived from these distance made with statistical distance determination. The results showed that angular Expansions may occur in a part of the nebulae that is moving at a velocity different than the observed velocity. Also the results of the comparison of our spectroscopic distances with the trig
In this study, the Earth's surface was studied in Razzaza Lake for 25 years, using remote sensing methods. Images of the satellites Landsat 5 (TM) and 8 (OLI) were used to study and determine the components of the land cover. The study covered the years 1995-2021 with an interval of 5 years, as this region is uninhabited, so the change in the land cover is slow. The land cover was divided into three main classes and seven subclasses and classified using the maximum likelihood classifier with the help of training sets collected to represent the classes that made up the land cover. The changes detected in the land cover were studied by considering 1995 as a reference year. It was found that there was a significant reduction in the water mass
... Show MoreThe current research aims at finding out how to properly and correctly manage waste and solid waste and reduce the difficulties faced by all countries. However, it is becoming increasingly acute in developed cities because their economies are growing rapidly. It is necessary to identify the modern methods used in developed countries in managing wastes. The use of modern waste management techniques is a coordinated effort by international agencies within the borders responsible for them. The problem of the study can be identified in the lack of clarity of environmental management procedures in place. The importance of the research contributes to providing greater capacity to the administrative and technical leadership in the municipality
... Show MoreObjective(s): The study aims to assess the early detection of early detection of first degree relatives to type-II
diabetes mellitus throughout the diagnostic tests of Glycated Hemoglobin A1C. (HgbA1C), Oral Glucose Tolerance
Test (OGTT) and to find out the relationship between demographic data and early detection of first degree
relatives to type-II diabetes mellitus.
Methodology: A purposive "non-probability" sample of (200) subjects first degree relatives to type-II diabetes
mellitus was selected from National Center for Diabetes Mellitus/Al-Mustansria University and Specialist Center
for Diabetes Mellitus and Endocrine Diseases/Al-kindy. These related persons have presented the age of (40-70)
years old. A questio
Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show MoreThis study aims to know the degree of importance and the availability of the enhancing specifications of the educational process, and the way its objectives are achieved. Such a step involves using educational techniques, laying the selection foundations, knowing the methods of their employment and tracking the obstacles that limit this employment in teaching Arabic to non-native speakers. To achieve these objectives, the study followed a descriptive approach, and collected the necessary data through an integrated questionnaire prepared for the purpose of describing the phenomenon or topic. This approach was adopted, as it is characterized by being comprehensive, focuses on collecting data related and necessary to the topic under study.
... Show More