With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.
Ultrasonic extraction is an inexpensive, simple and efficient alternative to conventional extraction techniques, as compared with other novel extraction techniques such as microwave-assisted extraction & supercritical fluid extraction techniques, the ultrasound apparatus is cheaper and its operation is easier. Ultrasound assisted extraction has risen rapidly in the latest decade, and for most applications it has proven to be effective compared to traditional extraction techniques. In this paper, a method of ultrasonic-assisted extraction was used to extract Inulin from tubers of Jerusalem artichoke, which have been reported to have several medicinal properties and uses. Inulin is a storage carbohydrate found in many plants especially
... Show MoreStudy of determining the optimal future field development has been done in a sector of South Rumaila oil field/ main pay. The aspects of net present value (economic evaluation) as objective function have been adopted in the present study.
Many different future prediction cases have been studied to determine the optimal production future scenario. The first future scenario was without water injection and the second and third with 7500 surface bbls/day and 15000 surface bbls/day water injection per well, respectively. At the beginning, the runs have been made to 2028 years, the results showed that the optimal future scenario is continuing without water in
The existing study aimed to assess four soil moisture sensors’ capacitive (WH51 and SKU: S EN0193) and resistive (Yl69 and IC Station) abilities, which are affordable and medium-priced for their accuracy in six common soil types in the central region of Iraq. The readings’ calibration for the soil moisture sensor devices continued through two gravimetric methods. The first depended on the protocols’ database, while the second was the traditional calibration method. The second method recorded the lowest analysis error compared with the first. The moderate-cost sensor WH51 showed the lowest standard error (SE), MAD , and RMSE and the highest R² in both methods. The performance accuracy of WH51 was close to readings shown by the manufac
... Show MoreDue to the lack of vehicle-to-infrastructure (V2I) communication in the existing transportation systems, traffic light detection and recognition is essential for advanced driver assistant systems (ADAS) and road infrastructure surveys. Additionally, autonomous vehicles have the potential to change urban transportation by making it safe, economical, sustainable, congestion-free, and transportable in other ways. Because of their limitations, traditional traffic light detection and recognition algorithms are not able to recognize traffic lights as effectively as deep learning-based techniques, which take a lot of time and effort to develop. The main aim of this research is to propose a traffic light detection and recognition model based on
... Show MoreMany consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurement
... Show MoreIn this work, carbon-doped copper oxide thin films were deposited by the reactive DC sputtering method for use as selective absorbents. The properties of the DC discharge plasma were studied, using the emission spectrum, in the presence of pure argon and by mixing it with oxygen once and carbon dioxide again to know the effect of adding these gases on the properties of the resulting plasma used in the deposition of films. The structural properties of the deposited thin films prepared with different flow ratio of carbon dioxide gas were studied using x-ray diffraction. To examine the selective absorber coatings, the reflectance within the UV-Vis spectrum was measured to calculate the percentage of energy absorbed by solar radia
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these
... Show MoreThe high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreThere are growing concerns over the possibility of transfer genetically modified
sequences from genetically modified feed component (GM feed) to animals and
their products, moreover, affect these sequences on animal and human health. This
study was implemented to detect P35S in modified feed by using PCR technique by
detecting presence P35S promoter, which responsible for the regulation of gene
expression for most of the transgenic genes. Thirty eight feed samples were
collected from different sources of Baghdad markets, which have been used for
feeding livestock, comprise 21 coarse mixes feed, 13 pelleted feed, and 4 expanded
feed. Genomic DNA was extracted by using two methods, CTAB method and
Wizard kit. In