Preferred Language
Articles
/
9hdcWZIBVTCNdQwC6azZ
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Multi-Focus Image Fusion Based on Pixel Significance Using Counterlet Transform
...Show More Authors

Abstract

 The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test  images, and compared with some present methods.

... Show More
View Publication Preview PDF
Publication Date
Tue Nov 03 2015
Journal Name
Journal Of Natural Sciences Research
Implementation of remote sensing for vegetation studying using vegetation indices and automatic feature space plot
...Show More Authors

Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Modified Multi-Criteria Decision Making Methods to Assess Classification Methods
...Show More Authors

      During the last few decades, many academic and professional groups gave attention to adopting the multi-criteria decision-making methods in a variety of contexts for decision-making that are given to the diversity and sophistication of their selections. Five different classification methods are tested and assessed in this paper. Each has its own set of five attribute selection approaches. By using the multi-criteria decision-making procedures, these data can be used to rate options. Technique for order of preference by similarity to ideal solution (TOPSIS) is designed utilizing a modified fuzzy analytic hierarchy process (MFAHP) to compute the weight alternatives for TOPSIS in order to obtain the confidence value of each class

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of The College Of Basic Education
Efficient Modifications of the Adomian Decomposition Method for Thirteenth Order Ordinary Differential Equations
...Show More Authors

This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.

View Publication
Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Efficient S.brunken Estimators For The Mean Of Normal Population With Kuown Variance
...Show More Authors

This  article  co;nsiders a shrunken  estimator  Â·Of  Al-Hermyari·   and

AI Gobuii (.1) to estimate  the mean (8) of a normal clistributicm N (8 cr4)  with  known variance  (cr+),  when  <:I    guess value (So) av11il ble about the mean (B) as· an initial estrmate. This estimator is shown to be

more efficient tl1an the class-ical estimators  especially when 8 is close to 8•. General expressions .for bias and MSE -of considered  estitnator are gi 'en, witeh  some examples.  Nut.nerical cresdlts, comparisons  and

conclusions ate reported.

View Publication Preview PDF
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Single Face Detection on Skin Color and Edge Detection
...Show More Authors

Publication Date
Wed Dec 30 2015
Journal Name
College Of Islamic Sciences
The concept of sohba when the Golden Imam Through his books
...Show More Authors

Scientists were interested in the statement of the concept of companions and the definition of the companion in terms of his status or his novel or inherent to the Prophet of Allah (peace be upon him) and was for those who did not walk in the translations and the abundant share in this work, and among these scientists Hafiz Shams al-Din al-Dhahabi, which was translated to the companions His books, indicating their status and effort, and who had a novel of them - what we will see in the folds of the research, God willing -

View Publication Preview PDF
Publication Date
Wed Dec 30 2015
Journal Name
College Of Islamic Sciences
Approvals of the Imam nuclear for Iraqis Through the student platform
...Show More Authors

The research was titled: Approval of the Imam of the Nuclear of Iraqis through the curriculum of the students.
The research revolves around the study of the weight of the imam nuclear jurisprudence in which the views of the Iraqi jurists of the Imam Shafi'i agreed through the book of students' approach to the nuclear imam, the research included a brief translation of the nuclear imam, and the definition of his place in the Shafi'i school, and then the definition of Iraqi jurists and then study the jurisprudence The course of research is only three issues, and compared with the views of imams, and the statement of the most correct opinion, and God and the conciliator.
researcher

View Publication Preview PDF
Publication Date
Tue Mar 01 2011
Journal Name
Al-khwarizmi Engineering Journal
Noise Removal of ECG Signal Using Recursive Least Square Algorithms
...Show More Authors

This paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.

View Publication Preview PDF