With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.
The research dealt with a comparative study between some semi-parametric estimation methods to the Partial linear Single Index Model using simulation. There are two approaches to model estimation two-stage procedure and MADE to estimate this model. Simulations were used to study the finite sample performance of estimating methods based on different Single Index models, error variances, and different sample sizes , and the mean average squared errors were used as a comparison criterion between the methods were used. The results showed a preference for the two-stage procedure depending on all the cases that were used
For modeling a photovoltaic module, it is necessary to calculate the basic parameters which control the current-voltage characteristic curves, that is not provided by the manufacturer. Generally, for mono crystalline silicon module, the shunt resistance is generally high, and it is neglected in this model. In this study, three methods are presented for four parameters model. Explicit simplified method based on an analytical solution, slope method based on manufacturer data, and iterative method based on a numerical resolution. The results obtained for these methods were compared with experimental measured data. The iterative method was more accurate than the other two methods but more complexity. The average deviation of
... Show MoreMedicines comprising fosfomycin are prescribed for urinary tract infections. These drugs are available for oral use as tromethamine and calcium, while fosfomycin-sodium and disodium are given for intravenous (IV) and intramuscular (IM). Many quantitative analytical methods have been reported to estimate Fosfomycin in blood, urine, plasma, serum, and pharmaceutical dosage formulations. Some techniques were spectrophotometric, mass spectrometry, gas chromatography, high-performance liquid chromatography, and electrochemical methods. Here we perform a rapid narrative review that discusses and comparison between them of various analytical methods for the determination of Fosfomycin-containing drugs.
Colloidal crystals (opals) made of close-packed polymethylmethacrylate (PMMA) were fabricated and grown by Template-Directed methods to obtain porous materials with well-ordered periodicity and interconnected pore systems to manufacture photonic crystals. Opals were made from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centered cubic (FCC) array. Optical properties of synthesized pores PMMA were characterized by UV–Visible spectroscopy. It shows that the colloidal crystals possess pseudo photonic band gaps in the visible region. A combination of Bragg’s law of diffraction and Snell’s law of refraction were used to calculate t
... Show MoreInterest in belowground plant growth is increasing, especially in relation to arguments that shallow‐rooted cultivars are efficient at exploiting soil phosphorus while deep‐rooted ones will access water at depth. However, methods for assessing roots in large numbers of plants are diverse and direct comparisons of methods are rare. Three methods for measuring root growth traits were evaluated for utility in discriminating rice cultivars: soil‐filled rhizotrons, hydroponics and soil‐filled pots whose bottom was sealed with a non‐woven fabric (a potential method for assessing root penetration ability). A set of 38 rice genotypes including the Oryza
EDIRKTO, an Implicit Type Runge-Kutta Method of Diagonally Embedded pairs, is a novel approach presented in the paper that may be used to solve 4th-order ordinary differential equations of the form . There are two pairs of EDIRKTO, with three stages each: EDIRKTO4(3) and EDIRKTO5(4). The derivation techniques of the method indicate that the higher-order pair is more accurate, while the lower-order pair provides superior error estimates. Next, using these pairs as a basis, we developed variable step codes and applied them to a series of -order ODE problems. The numerical outcomes demonstrated how much more effective their approach is in reducing the quantity of function evaluations needed to resolve fourth-order ODE issues.
This study was conducted at the College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad. The aim of this study was to isolate and diagnose fungi from fish feedstuff samples, and also detection of aflatoxin B1 and ochratoxin A in fish muscles and feedstuffs. Randomly, the samples were collected from some fish farms from Baghdad, Babil, Wasit, Anbar, and Salah al-Din provinces. This study included the collection of 35 feedstuff samples and 70 fish muscle samples, and each of the two fish samples fed on one sample of the feedstuff. The results showed the presence of several genera of different fungi including Aspergillus spp, Mucor spp., Penicillium spp., Yeast spp., Fusarium spp., Rhizopus spp., Scopiolariopsis spp., Ep
... Show MoreTo determine the important pathogenic role of celiac disease in triggering several
autoimmune disease, thirty patients with Multiple Sclerosis of ages (22-55) years
have been investigated and compared with 25 healthy individuals. All the studied
groups were carried out to measure anti-tissue transglutaminase antibodies IgA IgG
by ELISA test, anti-reticulin antibodies IgA and IgG, and anti-endomysial
antibodies IgA and IgG by IFAT. There was a significant elevation in the
concentration of anti-tissue transglutaminase antibodies IgA and IgG compared to
control groups (P≤0.05), there was 4(13.33%) positive results for anti-reticulin
antibodies IgA and IgG , 3(10%) positive results for anti-endomysial antibodies