With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.
Gastrointestinal diseases and especially chronic gastritis are mainly induced by Helicobacter pylori infection, and provides the basis for gastric carcinogenesis and colorectal cancer. The study involved the detection of serum anti-H. pylori IgG and IgA antibody of and some serum biomarkers ;CEA and CA19-9 in patients with gastrointestinal diseases. Fifty eight serum samples were collected from 25 males and 33 females .Peripheral venous blood was collected from each patient and sera obtained by centrifugation. Serum anti-H. pylori IgG and IgA ,serum CEA and CA19-9 were evaluated by enzyme-linked immunoadsorbent assays (ELISA).Forty eight serum samples were positive for IgG (82.7% ) divided int
... Show MoreThis study concerns the isolation of oil degraded bacterial samples from oil polluted soil in Al-Dora refinery/ Baghdad – Iraq. Soil samples (15) were on mineral salt agar medium (MSM) used to screen the oil degrading bacteria by forming clear zones around the colonies. To confirm the degradation of oil by these bacteria, the isolates were inoculated in mineral salt broth, 15 isolates of Pseudomonas spp. was detected from which two isolates identified as P. aeruginosa by morphological, physical and biochemical characteristics that confirmed by using Vitick identification system. Growth was estimated in terms of whole cell by measuring optical density at 620 nm and free extract protein was estimated by protein measurement with Folin phe
... Show MoreThis research after financial ratios in the detection of fraud to the financial statements published which enables specialists from the work of their studies and their conclusions to obtain the information they seek on the activities of the entity. Has provided researchers what these relics They then field study to test the validity and sincerity of the findings of the suggestions that have been upheld the need to study all financial ratios extracted in general, organized and used in decision-making processes necessary administrative.And that the financial management attention more financial analysis and extraction of financial ratios and compare them with industry standards taken from historical norms
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThe aims of this study are to explore the commercial artifacts in the following three kinds of vegetables oils, Nigella Sativa, Trigonella foenum-graecum Linn,and Zingiber officinale. These oils have been very popular medicinal plants which are commonly used in traditional medicine .These commercial oils have been compared with the extracts of these plants.
The physical properties of extracts and commercial oils of these plants have been stuied. We observed that the refractive index of the plants matches and non-significant, while specific gravity of Nigella Sativa has similar specific gravity in both extracts and commercial oil in contrast with Trigonella foenum Linn,and Zingiber officinale and we found significant difference (P<
Face Detection by skin color in the field of computer vision is a difficult challenge. Detection of human skin focuses on the identification of pixels and skin-colored areas of a given picture. Since skin colors are invariant in orientation and size and rapid to process, they are used in the identification of human skin. In addition features like ethnicity, sensor, optics and lighting conditions that are different are sensitive factors for the relationship between surface colors and lighting (an issue that is strongly related to color stability). This paper presents a new technique for face detection based on human skin. Three methods of Probability Density Function (PDF) were applied to detect the face by skin color; these ar
... Show MoreIn this paper, we have examined the influence of heat- transfer on the magnetohydrodynamics oscillatory flow of Williamson fluid during porous medium for two types of geometries "Poiseuille flow and Couette flow". We use perturbation technique in terms of the Weissenberg number to obtain explicit forms for velocity profiles. The results that obtained are illustrated by graphs.
Magnetohydrodynamic (MHD) effects of unsteady blood flow on Casson fluid through an artery with overlapping stenosis were investigated. The nonlinear governing equations accompanied by the appropriate boundary conditions were discretized and solved based on a finite difference technique, using the pressure correction method with MAC algorithm. Moreover, blood flow characteristics, such as the velocity profile, pressure drop, wall shear stress, and patterns of streamlines, are presented graphically and inspected thoroughly for understanding the blood flow phenomena in the stenosed artery.
The aim of the research is to examine the multiple intelligence test item selection based on Howard Gardner's MI model using the Generalized Partial Estimation Form, generalized intelligence. The researcher adopted the scale of multiple intelligences by Kardner, it consists of (102) items with eight sub-scales. The sample consisted of (550) students from Baghdad universities, Technology University, al-Mustansiriyah university, and Iraqi University for the academic year (2019/2020). It was verified assumptions theory response to a single (one-dimensional, local autonomy, the curve of individual characteristics, speed factor and application), and analysis of the data according to specimen partial appreciation of the generalized, and limits
... Show MoreIn this study Microwave and conventional methods have been used to extract and estimate pectin and its degree of esterification from dried grapefruit and orange peels. Acidified solution water with nitric acid in pH (1.5) was used. In conventional method, different temperature degrees for extraction pectin from grape fruit and orange(85 ,90 , 95 and 100?C) for 1 h were used The results showed grapefruit peels contained 12.82, 17.05, 18.47, 15.89% respectively, while the corresponding values were 5.96, 6.74, 7.41 and 8.00 %, respectively in orange peels. In microwave method, times were 90, 100, 110 and 120 seconds. Grapefruit peels contain 13.86, 16.57, 18.69, and 17.87%, respectively, while the corresponding values were of 6.53, 6.68, 7.2
... Show More