With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.
The present study included the microscopic and molecular identification of Entamoeba histolytica by using specific primers to detect four virulence factors possessed by Entamoeba histolytica. Virulence factors included Active Cysteine proteinase, Galactose/N-acetyl-D-galactose-lectin, Amoeba pore C and Phospholipase. Titanium dioxide nanoparticles (TiO2NPs) were synthesized from Pseudomonas aeruginosa which producing Pyocyanin pigment as a reducing agent to form it. After that we studied the ability ofTiO2NPs to inhibit virulence factors production and curing the genes responsible for encoding them by using four different dose 2 ,3, 4, 6 mg/Kg and administered by intraperitoneal injection
... Show MoreAtmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom
... Show MoreDetecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.
Background: Hyperlipidemia is an elevated fat (lipids), mostly cholesterol and triglycerides, in the blood. These lipids usually bind to proteins to remain circulated so-called lipoprotein. Aims of the study: To determine taste detection threshold and estimate the trace elements (zinc) in serum and saliva of those patients and compare all of these with healthy control subjects. Methods: Eighty subjects were incorporated in this study, thy were divided into two groups: forty patients on simvastatin treatment age between (35-60) years, and forty healthy control of age range between (35-60) years. Saliva was collected by non-stimulated technique within 10 minutes. Serum was obtained from each subject. Zinc was estimated in serum and saliva
... Show MoreIn this research, we find the Bayesian formulas and the estimation of Bayesian expectation for product system of Atlas Company. The units of the system have been examined by helping the technical staff at the company and by providing a real data the company which manufacturer the system. This real data include the failed units for each drawn sample, which represents the total number of the manufacturer units by the company system. We calculate the range for each estimator by using the Maximum Likelihood estimator. We obtain that the expectation-Bayesian estimation is better than the Bayesian estimator of the different partially samples which were drawn from the product system after it checked by the
... Show More