With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.
Early detection of eye diseases can forestall visual deficiency and vision loss. There are several types of human eye diseases, for example, diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. Diabetic retinopathy (DR) which is brought about by diabetes causes the retinal vessels harmed and blood leakage in the retina. Retinal blood vessels have a huge job in the detection and treatment of different retinal diseases. Thus, retinal vasculature extraction is significant to help experts for the finding and treatment of systematic diseases. Accordingly, early detection and consequent treatment are fundamental for influenced patients to protect their vision. The aim of this paper is to detect blood vessels from
... Show MoreA mathematical model constructed to study the combined effects of the concentration and the thermodiffusion on the nanoparticles of a Jeffrey fluid with a magnetic field effect the process of containing waves in a three-dimensional rectangular porous medium canal. Using the HPM to solve the nonlinear and coupled partial differential equations. Numerical results were obtained for temperature distribution, nanoparticles concentration, velocity, pressure rise, pressure gradient, friction force and stream function. Through the graphs, it was found that the velocity of fluid rises with the increase of a mean rate of volume flow and a magnetic parameter, while the velocity goes down with the increasing a Darcy number and lateral walls. Also, t
... Show MoreSensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreObjective: Evaluation of women's knowledge about risk factors and early detection of breast cancer at
Ibn Rushd college of education in Baghdad University.
Methodology: The study sample included (184) women in the Ibn Rushd College / University of
Baghdad, whose age ranged between (17-58) years. Data were collected through a structured
questionnaire prepared by the National Cancer Research Center which were answered during a scientific
symposium about breast cancer. The score was calculated by correcting the results of the answer, giving
one score for each correct answer and then estimating the level of knowledge and inputting all data in a
statistical program.
Results: The results showed limited level of women's
The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
In this study Microwave and conventional methods have been used to extract and estimate pectin and its degree of esterification from dried grapefruit and orange peels. Acidified solution water with nitric acid in pH (1.5) was used. In conventional method, different temperature degrees for extraction pectin from grape fruit and orange(85 ,90 , 95 and 100?C) for 1 h were used The results showed grapefruit peels contained 12.82, 17.05, 18.47, 15.89% respectively, while the corresponding values were 5.96, 6.74, 7.41 and 8.00 %, respectively in orange peels. In microwave method, times were 90, 100, 110 and 120 seconds. Grapefruit peels contain 13.86, 16.57, 18.69, and 17.87%, respectively, while the corresponding values were of 6.53, 6.68, 7.2
... Show More... Show MoreThe present paper deals with medical terms translation and its relationship with the medical text of Arabic and Spanish. Medical translation is the process of transferring texts related to the field of health and medicine to achieve an accurate effective translation from the source language text to the equivalent target language text. The most prominent medical translations are from English to Arabic as most of the syllabuses in Arab countries are taught in English.
Translation is an innovative work intended to render the original text in the source language into the target language with the highest level of linguistic and intellec
Optimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show More