With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.
The two-dimensional transient heat conduction through a thermal insulation of temperature dependent thermal properties is investigated numerically using the FVM. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner surface with a step change in temperature and subjected at its outer surface with a natural convection boundary condition associated with a periodic change in ambient temperature and heat flux of solar radiation. Two thermal insulation materials were selected. The fully implicit time scheme is selected to represent the time discretization. The arithmetic mean thermal conductivity is chosen to be the value of the approximated thermal conductivity at the i
... Show MoreToday, dimethyl ether (DME) is changing to ordinarily worn as a superb aerosol propellant and refrigerant for its eco-friendly characteristics. Lately, with the development of novel chemical energy in the coal industries, it has become a fascinating field of research as an alternative green fuel for diesel machines due to the high cetane number. The DME synthesis processes include catalytic dehydrating methanol in an adiabatic fixed-bed reactor. In this study, to investigate the chemical conditions of the methanol dehydration reaction, CFD simulations of the adiabatic reactor have been assessed. The advantage of the work is a sensitivity analysis was run to find the effect of pressure, kinetics, and velocity on the reactor performan
... Show MoreThe goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.
The levels of lead (pb), copper (cu), cobalt (co) and cadmium (cd) were determined in different kinds of milk and the health risks were evaluated. The mean levels were 0.73±0.21, 0.06±0.01, 0.12±0.01 and 0.14±0.01 ppm for these metals respectively. The levels of pb and cu were found to be insignificant differences (p<0.05), whereas the levels of co and cd, were no significant differences (p>0.05). The dry and liquid kinds of milk were different significantly (p<0.05), whereas the original, was no significant differences (p>0.05). The values for all metals were more than one. The metals pb and cd were detected at highest concentrations in most dry and liquid milk samples.
In the present study, a total of 245 flour samples were collected from 49 mills on both sides of Baghdad city (Al- Karkh and Al- Resafa), during the period from 1/6 - 1/12/ 2015 to detect the prolportion of iron added to the flour samples. It is found that only 45% of mills produced flour contain the prescribed percentage of iron (30-60 ppm) while 51.9% of the mills produced flour at rate is less or much more than the prescribed percentage, while only 4.1% of the mills were not added iron to the flour.
Drip irrigation is one of the conservative irrigation techniques since it implies supplying water directly on the soil through the emitter; it can supply water and fertilizer directly into the root zone. An equation to estimate the wetted area in unsaturated soil is taking into calculating the water absorption by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, HYDRUS comprises analytical types of the estimate of different soil hydraulic properties. Used one soil type, sandy loam, with three types of crops; (corn, tomato, and sweet sorghum), different drip discharge, different initial soil moisture content was assumed, and different time durations. The relative error for the different hydrauli
... Show MoreAbstract
In this study, mucilage was extracted from Malabar spinach and tested for drag-reducing properties in aqueous liquids flowing through pipelines. Friction produced by liquids flowing in turbulent mode through pipelines increase power consumption. Drag-reducing agents (DRA) such as polymers, suspended solids and surfactants are used to reduce power losses. There is a demand for natural, biodegradable DRA and mucilage is emerging as an attractive alternative to conventional DRAs. Literature review revealed that very little research has been done on the drag-reducing properties of this mucilage and there is an opportunity to explore the potential applications of mucilage from Malabar spinach. An experi
... Show MoreSimple, economic and sensitive mathematical spectrophotometric methods were developed for the estimation 4-aminoantipyrine in presence of its acidic product. The estimation of binary mixture 4-aminoantipyrine and its acidic product was achieved by first derivative and second derivative spectrophotometric methods by applying zero-crossing at (valley 255.9nm and 234.5nm) for 4-aminoantipyrine and (peak 243.3 nm and 227.3nm) for acidic product. The value of coefficient of determination for the liner graphs were not less than 0.996 and the recovery percentage were found to be in the range from 96.555 to 102.160. Normal ratio spectrophotometric method 0DD was used 50 mg/l acidic product as a divisor and then measured at 299.9 nm with correlat
... Show MoreSimple, economic and sensitive mathematical spectrophotometric methods were developed for the estimation 4-aminoantipyrine in presence of its acidic product. The estimation of binary mixture 4-aminoantipyrine and its acidic product was achieved by first derivative and second derivative spectrophotometric methods by applying zero-crossing at (valley 255.9nm and 234.5nm) for 4-aminoantipyrine and (peak 243.3 nm and 227.3nm) for acidic product. The value of coefficient of determination for the liner graphs were not less than 0.996 and the recovery percentage were found to be in the range from 96.555 to 102.160. Normal ratio spectrophotometric method 0DD was used 50 mg/l acidic product as a divisor
... Show More