Al Huweizah Marsh is considered as the largest marsh at the southern part of Iraq. About one third of the marsh is located within the Iranian territory. Iran began to construct earth dikes along the Iraqi-Iranian international borders to separate the Iranian part of the marsh. The electrical conductivity, EC, value was adopted to be the indicator for the water salinity within the marsh. A steady two-dimensional water quality routing model was implemented by using the RMA2 and RMA4 softwares within the SMS computer package to estimate the distribution of the
EC values within the marsh seasonally during the wet, moderate and dry water years. The EC distribution Patterns were estimated considering the expected two cases of the marsh futu
This research estimates the effect of independent factors like filler (3%, 6%, 9%, 11% weight fraction), normal load (5N, 10N, 15N), and time sliding (5,7 , 9 minutes) on wear behavior of unsaturated polyester resin reinforced with jute fiber and waste eggshell and, rice husk powder composites by utilizing a statistical approach. The specimens polymeric composite prepared from resin unsaturated polyester filled with (4% weight fraction) jute fiber, and (3%, 6%, 9%, 11% weight fraction) eggshell, and rice husk by utilizing (hand lay-up) molding. Dry sliding wear experiments were carried utilizing a standard (pin on disc test setup) following a well designed empirical schedule that depends on Taguchi’s experimental design L9 (MINIT
... Show MoreThe main object of the current work was to determine the antifungal efficiency of secondary metabolites product called synephrine that extracted from Citrus sinesis peels and the ability of synephrine to biosynthesis gold nanoparticles from HAucl4 which consider environmentally favourable method, then determine their activity against pathogenic human dermatophyte. The identification of synephrine done by Thin layer chromatography (TLC), High Performance Liquid Chromatography (HPLC) and The Fourier Transform Infrared (FTIR). The characterization of gold nanoparticles by using Ultra Violet-Visible Spectroscopy (UV-Vis), Field – Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR), confirmed the biosynt
... Show MoreIn this study, NAC-capped CdTe/CdS/ZnS core/double shell QDs were synthesized in an aqueous medium to investigate their utility in distinguishing normal DNA from mutated DNA extracted from biological samples. Following the interaction between the synthesized QDs with DNA extracted from leukemia cases (represents damaged DNA) and that of healthy donors (represents undamaged DNA), differential fluorescent emission maxima and intensities were observed. It was found that damaged DNA from leukemic cells DNA-QDs conjugates at 585 nm while intact DNA (from healthy subjects) DNA–QDs conjugates at 574 nm. The obtained results from the optical analyses indicate that the prepared QDs could be utilized as probe for detecting disrupted DNA th
... Show MoreThis research of using Feldspar in the production self compacting concrete (SCC) ( 5,10,15 )% as partial replacement by weight of cement .In this research some of fresh properties of SCC ( slump flow used V-funnel test and filling ability used ( U- box test ) for concrete mixes and also some of the harden properties of SCC ( compressive and flexural tests ). The research results showed that negative effect of Feldspar on the fresh properties of self compacting concrete but the positive effect of Feldspar on the harden properties of self compacting concrete .
Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show More