The work in this research presents an experimental and a theoretical study to obtain the effect of using a low permeability geosynthetic material on the longitudinal and lateral coefficients of dispersion. This would have its effect on the contaminants migration through an isotropic, homogenous and saturated soil. The first stage of this research involves the study of the geosynthetic material and in calculating the longitudinal and lateral coefficients of dispersion for an Iraqi sandy soil by using an experimental set-up to simulate the processes. To investigate the effect of using a geosynethtic material on the dispersion coefficients, the test was conducted for each velocity that was used in the experimental work and as follows: without using the geosynethtic material first, and by using the geosynthetic material as a base and a cover for the soil sample. The second stage of this research is interested in developing a numerical model able to simulate the contaminants dispersion phenomenon. To solve the two-dimensional advection-dispersion equation, a numerical model was derived using the finite element method. This numerical model was verified by comparing it with the analytical solution of one-dimensional dispersion. To study the effect of using a geosynethtic material on the contaminants dispersion through soil, a proposed field problem is tested.
In the present study, magnet silica-coated Ag2WO4/Ag2S nanocomposites (FOSOAWAS) were fabricated via a multistep method to address the drawbacks related to single photocatalysts (pure Ag2WO4 and pure Ag2S) and to clarify the significant influence of semiconductor heterojunction on the enhancement of visible-light-driven organic degradation. Different techniques were performed to investigate the elemental composition, morphology, magnetic and photoelectrochemical properties of the fabricated FOSOAWAS photocatalyst. The FOSOAWAS photocatalyst (1 g/L) exhibited excellent photodegradation efficiency (99.5%) against Congo red dye (CR = 20 ppm) after 140 min of visible-light illumination. This result confirmed the ability of the heterojunction be
... Show MoreThin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.
New series of 4,4'-((2-(Aryl)-1H-benzo[d]imidazole-1,3(2H)-diyl)bis(methylene))Diphenol(3a-g) was successfully synthesized from cyclization of the reduction product of bis Schiff bases (2) with aryl aldehydes bearing phenolic hydroxyl in the presence of acetic acid. The structure of these compounds was identified from FT-IR, 1H NMR, 13C NMR and EIMs. The Antioxidant capability was screened by DPPH and FRAP assays. Both assays showed antioxidant capability more than BHT as well. Compounds 3b and 3c showed antioxidant capacity slightly less than ascorbic acid. The docking study for theses compound was carried out as III DNA polymerase inhibitor. The results of docking demonstrated that the increase in hinderances around phenolic hydr
... Show MoreExperimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure
... Show MoreThis study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From
... Show MoreLaboratory studies were conducted at the biological control unit, college of Agriculture, University of Baghdad to evaluate some biological aspects of the predator Chilocorus bipustulatus (Coleoptera: Coccinellidae), which is considered one of the most important predators on many insect pests, especially the scale insect, Parlatoria blanchardi, (Homoptera: Diaspididae) on date palms. The results showed that biological parameters of the predator were varied according to different degree of temperature. Egg incubation period was significantly different and reached to 7.5 and 5.44 day at 25 and 30°C respectively, Fertility was the same 100% at both temperature degrees. Larval growth periods were 17.41 and 16.12 day as well as the mortality
... Show More