Objectives The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. Methods hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission scanning electron microscopy (FESEM). The isolated hPDLSCs were implanted on the fabricated PCL. After 21 days, FESEM was conducted to evaluate the implanted scaffolds, and an MTT assay was performed to characterize the biological response of the PCL scaffold at different cell exposure durations (24, 48, and 72 h). Results Periostin was expressed in the expanded PDL cells, and this result revealed that 20% weight/volume PCL scaffold with a pore size of more than 10 μm was the best. The growth rates of PDLSCs were high. Cytotoxicity test of fabricated PCL scaffold demonstrated no significant change in the cell viability when compared with the negative control and no deteriorating or inhibitory effect on growth after different durations. Conclusions A cell sheet was successfully formed by using PCL as a scaffold to cover dental implants and promote PDL cell attachment, proliferation, and growth for biohybrid implant construction.
This research is concerned with a new type of ferrocement characterized by its lower density and enhanced thermal insulation. Lightweight ferrocement plates have many advantages, low weight, low cost, thermal insulation, environmental conservation. This work contain two group experimental : first different of layer ferrocement, second different of ratio aggregate to cement. The experiments were made to determined the optimum proportion of cement and lightweight aggregate (recycle thermestone ). A low W/C ratio of 0.4 was used with super plasticizer conforming to ASTM 494 Type G. The compressive strength of the mortar mixes is 20-25 MPa. The work also involved the determination of thermal properties .Thermal conductivity value of thi
... Show MoreSubmerged arc welding (SAW) process is an essential metal joining processes in industry. The quality of weld is a very important working aspect for the manufacturing and construction industries, the challenges are made optimal process environment. Design of experimental using Taguchi method (L9 orthogonal array (OA)) considering three SAW parameter are (welding current, arc voltage and welding speed) and three levels (300-350-400 Amp. , 32-36-40 V and 26-28-30 cm/min). The study was done on SAW process parameters on the mechanical properties of steel type comply with (ASTM A516 grade 70). Signal to Noise ratio (S/N) was computed to calculate the optimal process parameters. Percentage contributions of each parameter are validated by using an
... Show Morethe research ptesents a proposed method to compare or determine the linear equivalence of the key-stream from linear or nonlinear key-stream
The microdrilling and nanodrilling holes are produced by a Q-switched Nd :YAG laser (1064 nm) interaction with 8009 Al alloy using nanoparticles. Two kinds of nanoparticles were used with this alloy. These nanoparticles are tungsten carbide (WC) and silica carbide (SiC). In this work, the microholes and nanoholes have been investigated with different laser pulse energies (600, 700 and 800)mJ, different repetition rates (5Hz and 10Hz) and different concentration of nanoparticles (90%, 50% and 5% ). The results indicate that the microholes and nanoholes have been achieved when the laser pulse energy is 600 mJ, laser repetition rate is 5Hz, and the concentration of the nanoparticles (for the two types of n
... Show MoreThe synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.
A simple, precise and accurate spectrophotometric method has been developed for simultaneous estimation of sulfanilamide and furosemide in their mixture by using first and second order derivative method in the ultraviolet region. The method depends on first and second derivative spectrophotometry, with zero-crossing and peak to base line and peak area measurements. The first derivative amplitudes at 214, 238 and 266 nm were selected for the assay of sulfanilamide and 240, 260, 284, 314 and 352 nm for furosemide. Peak area at 201222, 222-251 and 251-281 nm selected for estimation of sulfanilamide and at 229-249, 249270, 270-294, 294-333 and 333-382 nm for furosemide. The second derivative amplitudes at 220, 252 and 274 nm for sulfanilamid
... Show MoreThis paper presents the theoretical and experimental results of drilling high density
polyethylene sheet with thickness of 1 mm using millisecond Nd:YAG pulsed laser. Effects of laser
parameters including laser energy, pulse duration and peak power were investigated. To describe and
understand the mechanism of the drilling process Comsol multiphysics package version 4.3b was used to
simulate the process. Both of the computational and experimental results indicated that the drilling
process has been carried out successfully and there are two phases introduced in the drilling process,
vaporization and melting. Each portion of these phases depend on the laser parameters used in the
drilling process
Cutaneous leishmaniasis is a disease caused by Leishmania tropica parasite. Current treatments for this parasite are undesirable because of their toxicity, resistance, and high cost. Macrophages are key players against pathogens. Nitric oxide (NO), a molecule produce by immune cells, controls intracellular killing of pathogens during infection. Silver nanoparticles (Ag NPs) demonstrated broad-spectrum activity against various types of infectious diseases. It has the ability to stimulate oxygen species production. This study aims to analyze the macrophages activation through NO production and estimate the cytotoxicity based on the lactate dehydrogenase (LDH) release upon exposure to L. tropica and
... Show MoreVibration analysis plays a vital role in understanding and analyzing the behavior of the structure. Where, it can be utilized from this analysis in the design process of the structures in different engineering applications, check the quality and safety of the structure under different working conditions. This work presents experimental measurements and numerical solutions to an out of plane vibration of a rectangular plate with a circular hole. Free edges rectangular plates with different circular holes diameters were studied. The effects of hole location on the plate natural frequencies were also investigated. A finite element modeling (using ANSYS Software) has been used to analyze the vibration characteristics of the plates. A good agree
... Show More