Preferred Language
Articles
/
9hZa2YkBVTCNdQwCqI05
Performance Analysis of a New Compact Magneto-Rheological Proportional Control Valve for Hydraulic Actuation Using FEM and Experimental Approach
...Show More Authors

One of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a comprehensive literature review on the advancement of this technology provides valuable insight on MR valve design by previous researchers. The design of MR directional control valve, the construction of the valve and the principle of work are presented. The design of proposed MR single valve has enabled the development of the MR directional control valve. Design and finite elements analysis using FEMM software of the MR single valve and MR directional control valve were done to obtain the optimal design. The valve was fabricated and the experimental rig for valve test was developed. The experiment presentation for functional working principle of the valve and valve performance were shown. The results of the simulation results show that the valve works in controlling the direction and the speed of hydraulic actuators. The valve can be operated with variable flow rate by varying the electric current. It is found that the electric current is inversely proportional to the flow rate. High current produces low flow rate and vice versa. It does the work of the valves to proportionally control the hydraulic actuators. The valve can be operated as ON-OFF directional control valve as well as proportional directional control valve with meter-in or meter-out by changing electric connection.

Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Engineering
Design a Multi-Choice Fuzzy Control System of the Greenhouse
...Show More Authors

Applications of nonlinear, time variant, and variable parameters represent a big challenge in a conventional control systems, the control strategy of the fuzzy systems may be represents a simple, a robust and an intelligent solution for such applications.

This paper presents a design of fuzzy control system that consists of three sub controllers; a fuzzy temperature controller (FC_T), a fuzzy humidity controller (FC_H) and a ventilation control system; to control the complicate environment of the greenhouse (GH) using a proposed multi-choice control system approach. However, to reduce the cost of the crop production in the GH, the first choice is using the ventilation system to control the temperature and humidit

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Baghdad Science Journal
Spectroscopic Studies and Thermal Analysis of New Azo Dyes Ligands and their Complexes with some Transition of Metal Ions
...Show More Authors

New Azo ligands HL1 [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] and HL2 [3-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)diazenyl)-2-hydroxy-1-naphthaldehyde] have been synthesized from reaction (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol) for HL1 and (4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one) for HL2. Then, its metal ions complexes are synthesized with the general formula; [CrHL1Cl3(H2O)], [VOHL1(SO4)] [ML1Cl(H2O)] where M = Mn(II), Co(II), Ni(II) and Cu(II), and general formula; [Cr(L2)2 ]Cl and [M(L2)2] where M = VO(II), Mn(II), Co(II), Ni(II) and Cu(II) are reported. The ligands and their metal complexes are characterized by phisco- chemical spectroscopic

... Show More
View Publication Preview PDF
Crossref (10)
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
On modelling and adaptive control of a linear smart beam model interacting with fluid
...Show More Authors
Abstract<p>This paper deals with modelling and control of Euler-Bernoulli smart beam interacting with a fluid medium. Several distributed piezo-patches (actuators and/or sensors) are bonded on the surface of the target beam. To model the vibrating beam properly, the effect of the piezo-patches and the hydrodynamic loads should be taken into account carefully. The partial differential equation PDE for the target oscillating beam is derived considering the piezo-actuators as input controls. Fluid forces are decomposed into two components: 1) hydrodynamic forces due to the beam oscillations, and 2) external (disturbance) hydrodynamic loads independent of beam motion. Then the PDE is discretized usi</p> ... Show More
View Publication
Crossref
Publication Date
Thu Mar 21 2024
Journal Name
International Development Planning Review
THE EFFECT OF USING A DISABLING FORCE TRAINING TOOL ON WALKING PERFORMANCE: AN ANALYTICAL STUDY OF TIME AND STEP LENGTH IN THE 20 KM WALKING RACE EVENT FOR APPLICANTS
...Show More Authors

Publication Date
Fri Sep 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Fuzzy Control of the Robotic Hands Catching Force Using Muscle Wires Actuator
...Show More Authors

The aim of this research is controlling the amount of the robotic hand catching force using the artificial muscle wire as an actuator to achieve the desired response of the robotic hand in order to catch different things without destroying or dropping them; where the process is to be similar to that of human hand catching way. The proper selection of the amount of the catching force is achieved through out simulation using the fuzzy control technique. The mechanism of the arrangement of the muscle wires is proposed to achieve good force selections. The results indicate the feasibility of using this proposed technique which mimics human reasoning where as the weight of the caught peace increases, the force increases also with approximatel

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Using Kernel Density Estimator To Determine the Limits of Multivariate Control Charts.
...Show More Authors

Quality control is an effective statistical tool in the field of controlling the productivity to monitor and confirm the manufactured products to the standard qualities and the certified criteria for some products and services and its main purpose is to cope with the production and industrial development in the business and competitive market. Quality control charts are used to monitor the qualitative properties of the production procedures in addition to detecting the abnormal deviations in the production procedure. The multivariate Kernel Density Estimator control charts method was used which is one of the nonparametric methods that doesn’t require any assumptions regarding the distribution o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Case Studies In Thermal Engineering
Robust composite temperature control of electrical tube furnaces by using disturbance observer
...Show More Authors

As one type of resistance furnace, the electrical tube furnace (ETF) typically experiences input noise, measurement noise, system uncertainties, unmodeled dynamics and external disturbances, which significantly degrade its temperature control performance. To provide precise, and robust temperature tracking performance for the ETF, a robust composite control (RCC) method is proposed in this paper. The overall RCC method consists of four elements: First, the mathematical model of the ETF system is deduced, then a state feedback control (SFC) is constructed. Third, a novel disturbance observer (DO) is designed to estimate the lumped disturbance with one observer parameter. Moreover, the stability of the closed loop system including controller

... Show More
View Publication
Scopus (11)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Wed Mar 27 2013
Journal Name
Journal Of University Of Babylon
Reduce the required time for measuring the permeability of clayey soils by using new manufactured cell
...Show More Authors

Reduce the required time for measuring the permeability of clayey soils by using new manufactured cell

View Publication
Publication Date
Wed Jan 01 2020
Journal Name
University Of Plymouth
Intrinsic Control Strategies for Herpesvirus-based Vaccine Vectors
...Show More Authors

Publication Date
Wed Sep 29 2021
Journal Name
Al-khwarizmi Engineering Journal
Robust Computed Torque Control for Uncertain Robotic Manipulatorss
...Show More Authors

This paper presents a robust control method for the trajectory control of the robotic manipulator. The standard Computed Torque Control (CTC) is an important method in the robotic control systems but its not robust to system uncertainty and external disturbance. The proposed method overcome the system uncertainty and external disturbance problems. In this paper, a robustification term has been added to the standard CTC. The stability of the proposed control method is approved by the Lyapunov stability theorem.  The performance of the presented controller is tested by MATLAB-Simulink environment and is compared with different control methods to illustrate its robustness and performance.

View Publication Preview PDF
Scopus (7)
Crossref (4)
Scopus Crossref