One of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a comprehensive literature review on the advancement of this technology provides valuable insight on MR valve design by previous researchers. The design of MR directional control valve, the construction of the valve and the principle of work are presented. The design of proposed MR single valve has enabled the development of the MR directional control valve. Design and finite elements analysis using FEMM software of the MR single valve and MR directional control valve were done to obtain the optimal design. The valve was fabricated and the experimental rig for valve test was developed. The experiment presentation for functional working principle of the valve and valve performance were shown. The results of the simulation results show that the valve works in controlling the direction and the speed of hydraulic actuators. The valve can be operated with variable flow rate by varying the electric current. It is found that the electric current is inversely proportional to the flow rate. High current produces low flow rate and vice versa. It does the work of the valves to proportionally control the hydraulic actuators. The valve can be operated as ON-OFF directional control valve as well as proportional directional control valve with meter-in or meter-out by changing electric connection.
Ration power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems
... Show MoreThis paper investigated the treatment of textile wastewater polluted with aniline blue (AB) by electrocoagulation process using stainless steel mesh electrodes with a horizontal arrangement. The experimental design involved the application of the response surface methodology (RSM) to find the mathematical model, by adjusting the current density (4-20 mA/cm2), distance between electrodes (0.5-3 cm), salt concentration (50-600 mg/l), initial dye concentration (50-250 mg/l), pH value (2-12 ) and experimental time (5-20 min). The results showed that time is the most important parameter affecting the performance of the electrocoagulation system. Maximum removal efficiency (96 %) was obtained at a current density of 20 mA/cm2, distance be
... Show MoreThe effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and hea
... Show MoreThis study confirms the ubiquitin conjugating enzyme 2B (Rad6) plays a significant role in the DNA repair pathway also because the ubiquitin-conjugating pathway. The DNA repair pathway could be a variety of bypass repair mechanism where the broken base pair is bypassed by permitting the replication fork to labor under the site of injury. This is often done by a shift mechanism wherever deoxyribonucleic acid enzyme - δ is switched with DNA enzyme - η (DNAP - η). Site of DNAP - η is massive enough to permit the broken ester to labor under, and so bypass the broken nucleotide. However, this is often potential solely through the involvement of Proliferating cell nuclear antigen (PCNA) that could be a processivity issue and it acts as a plat
... Show MoreThe research summarizes the knowledge of the dimensions and denotations of T.V advertisement; and its constituents for building it through the semiotic approach of an ad sample represented by the announcement of Zain Kuwait Telecom Company which carries the title "Mr. President" using Roland Barth's approach, starting with the designation, implicit, and linguistic reading to reach the narrative features and their denotations. That makes television advertising as a semiotic and pragmatic discourse in view of the still and motion picture with its efficiency and strength to inform and communicate. And what lies in it of aesthetic, artistic elements; informational and effective power in influencing the recipients by focusing on narratives and a
... Show MoreThe present study investigates the characterization of silver nanoparticles (AgNPs) synthesized using Fusarium solani and their impact on tomato seed germination, plant growth, and disease resistance. A visible color change from yellow to dark smoky indicated the formation of AgNPs, while UV-visible spectrophotometry revealed an absorbance peak at 437 nm, confirming their presence. Atomic force microscopy analysis showed that the AgNPs ranged from 0 to 39.27 nm in size, with an average height of 5.772 nm, while scanning electron microscopy highlighted their diverse surface morphology. The application of AgNPs and mycorrhizal fungi significantly improved tomato seed germination rates, plant height, and dry weight compared to untreate
... Show MoreThe evolution of cryptography has been crucial to preservation subtle information in the digital age. From early cipher algorithms implemented in earliest societies to recent cryptography methods, cryptography has developed alongside developments in computing field. The growing in cyber threats and the increase of comprehensive digital communications have highlighted the significance of selecting effective and robust cryptographic techniques. This article reviews various cryptography algorithms, containing symmetric key and asymmetric key cryptography, via evaluating them according to security asset, complexity, and execution speed. The main outcomes demonstrate the growing trust on elliptic curve cryptography outstanding its capabi
... Show More