In this study, light elements 19F ,22Na for (α,n) and (n,α) reactions as well as α-particle energy from a threshold energy to 10 MeV are used according to the available data of reaction cross sections. The more recent cross sections data of (α,n) and (n,α) reactions are reproduced in fine steps 86.4 KeV for 22Na (n,α) 19F in the specified energy range, as well as cross section (α,n) values were derived from the published data of (n,α) as a function of αenergy in the same fine energy steps by using the principle inverse reactions. This calculation involves only the ground state of 19F ,22Na in the reactions 19F (α,n) 22Na , 2
... Show MoreIn the present work, different thicknesses of CdS film were prepared by chemical bath deposition. Z-Scan technique was used to study the nonlinear refractive index and nonlinear absorption coefficients. Linear optical testing were done such as transmission test, and thickness of films were done by the interference fringes (Michelson interferometer). Z-scan experiment was performed at 650nm using CW diode laser and at 532nm wavelength. The results show the effect of self-focusing and defocusing that corresponds with nonlinear refraction n2. The effect of two-photon absorption was also studied, which correspond to the nonlinear absorption coefficient B.
In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
The present paper studies the generalized Φ- recurrent of Kenmotsu type manifolds. This is done to determine the components of the covariant derivative of the Riemannian curvature tensor. Moreover, the conditions which make Kenmotsu type manifolds to be locally symmetric or generalized Φ- recurrent have been established. It is also concluded that the locally symmetric of Kenmotsu type manifolds are generalized recurrent under suitable condition and vice versa. Furthermore, the study establishes the relationship between the Einstein manifolds and locally symmetric of Kenmotsu type manifolds.
The Detour distance is one of the most common distance types used in chemistry and computer networks today. Therefore, in this paper, the detour polynomials and detour indices of vertices identified of n-graphs which are connected to themselves and separated from each other with respect to the vertices for n≥3 will be obtained. Also, polynomials detour and detour indices will be found for another graphs which have important applications in Chemistry.
R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
In this paper we introduce generalized (α, β) derivation on Semirings and extend some results of Oznur Golbasi on prime Semiring. Also, we present some results of commutativity of prime Semiring with these derivation.