We study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence, and Reynolds number. An increase in wall slippage causes a reduction in the number of higher-order dipoles created. This leads to a decrease in the magnitude of the enstrophy peaks and reduces the dissipation of energy. The dissipation of the energy and its relation to the enstrophy are also investigated theoretically, confirming quantitatively how the presence of slip modifies this relation.
The aim of the research is to identify the educational and psychological effects of the positive and negative aspects of using social networking websites. The researcher administered a number of questions to (250) users of different types of social networking websites. He analyzed his research results and obtained a number of results. The research has reached a number of recommendations and suggestion: Regulating the use of social media. Monitoring the parents of the sites used by children in a way that they do not feel they are observers. It is necessary to devote an hour daily to show the importance of real social life for children other than using social media. It is necessary to show the importance of choosing friends who hav
... Show MoreThis study investigates the surgical and thermal effects on oral soft tissues produced by CO2 laser emitting at 10.6 micrometers with three different fluences 490.79, 1226.99 and 1840.4 J/cm2. These effects are specifically; incision depth, incision width and the tissue damage width and depth. The results showed that increasing the fluence and /or the number of beam passes increase the average depths of ablation. Moreover, increasing the fluence and the number of beam passes increase the adjacent tissue damage in width and depth. Surgeons using CO2 laser should avoid multiple pulses of the laser beam over the same area, to avoid unintentional tissue damage.
Electrical properties were studied for Pectin/PVA graphene composites films and the effect of aqueous interaction on their properties. The conductivity and the dielectric constant of this composite are important because Polysaccharide like pectin is increasingly being used in biomedical applications and as nanoparticles coating materials. The Dielectric and conductivity of composite films were compared in dry and wet condition the differences in the results were attributed to the water molecules and the hydrogen bond which connect the three composite compounds (Pectin, PVA and Graphene) together. These connections were allowed the hydrogen and hydroxyl group’s migrations in the composite super molecules. On the other hand, graphene was pr
... Show More
Anadrol (oxymetholone) is an active androgenic anabolic steroid that has been clinically studied in numerous diseases since the 1960s. It is used in the treatment of anemia and the replacement of male sex steroids. Unfortunately, in attempts to improve physical performance, Anadrol could be misused by athletes, that can lead to poisoning contributes to hepatotoxicity.
The aim of this study was to investigate the impact of anadrol on the liver function in rat model, via assessment of liver enzymes and histopathological study.
A forty male rats, weights about (200-300 gm), aged 8-12 weeks, after acclimatization, the rats were randomly divided into four groups (10 rats in each group) as follow: control group (in w
... Show MoreA huge potential from researchers was presented for enhancing the nonlinear optical response for materials that interacts by light. In this work, we study the nonlinear optical response for chemically prepared nano- fluid of silver nanoparticles in de-ionized water with TSC (Tri-sodium citrate) protecting agent. By the means of self-defocusing technique and under CW 473 nm blue laser, the reflected diffraction pattern were observed and recorded by CCD camera. The results demonstrate that, the Ag nano-fluid shows a good third order nonlinear response and the magnitude of the nonlinear refractive index was in the order of 10−7 cm2/W. We determine the maximum change of the nonlinear refractive index and the related phase shift for the mat
... Show MoreThe structure, optical, and electrical properties of SnSe and its application as photovoltaic device has been reported widely. The reasons for interest in SnSe due to the magnificent optoelectronic properties with other encouraging properties. The most applications that in this area are PV devices and batteries. In this study tin selenide structure, optical properties and surface morphology were investigated and studies. Thin-film of SnSe were deposit on p-Si substrates to establish a junction as solar cells. Different annealing temperatures (as prepared, 125,200, 275) °C effects on SnSe thin films were investigated. The structure properties of SnSe was studied through X-ray diffraction, and the results appears the increasing of the peaks
... Show MoreIn this work, a single pile is physically modeled and embedded in an upper liquefiable loose sand layer overlying a non-liquefiable dense layer. A laminar soil container is adopted to simulate the coupled static-dynamic loading pile response during earthquake motions: Ali Algharbi, Halabjah, El-Centro, and Kobe earthquakes. During seismic events with combined loading, the rotation along the pile, the lateral and vertical displacements at the pile head as well as the pore pressure ratio in loose sandy soil were assessed. According to the experimental findings, combined loading that ranged from 50 to 100% of axial load would alter the pile reaction by reducing the pile head peak ground acceleration, rotation of the pile, and lateral displacem
... Show MoreBackground: Pain is one of the most reported side effects of orthodontic treatment despite the advanced technology in orthodontics. Many analgesics have been introduced to control orthodontic pain including acetaminophen and selective and nonselective nonsteroidal anti-inflammatory drugs. The great concern about these drugs is their adverse effect on rate of teeth movement. Aims: The purpose of this study was to evaluate and compare the effect of acetaminophen, ibuprofen and etoricoxib on pain perception and their influence on the rate of teeth movement during leveling and alignment stage. Methods: Forty patients were evenly and randomly distributed in a blinded way to one of four groups: placebo (starch capsules), acetaminophen 500mg th
... Show More